mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
* support fa3 backend run in pd disaggregated * support fa3 backend run in pd disaggregated * support fa3 backend run in pd disaggregated * support fa3 backend run in pd disaggregated * delete use_fast_ffn
116 lines
4.0 KiB
Python
116 lines
4.0 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
|
|
from fastdeploy.config import FDConfig, LoadConfig, ModelConfig
|
|
from fastdeploy.model_executor.load_weight_utils import \
|
|
load_composite_checkpoint
|
|
from fastdeploy.model_executor.models.deepseek_v3 import \
|
|
DeepSeekV3PretrainedModel
|
|
from fastdeploy.model_executor.models.ernie4_5_moe import \
|
|
Ernie4_5_PretrainedModel
|
|
from fastdeploy.model_executor.models.ernie4_5_mtp import \
|
|
Ernie4_5_MTPPretrainedModel
|
|
from fastdeploy.model_executor.models.model_base import ModelRegistry
|
|
from fastdeploy.model_executor.models.qwen2 import Qwen2PretrainedModel
|
|
from fastdeploy.model_executor.models.qwen3 import Qwen3PretrainedModel
|
|
from fastdeploy.model_executor.models.qwen3moe import Qwen3MoePretrainedModel
|
|
from fastdeploy.platforms import current_platform
|
|
|
|
MODEL_CLASSES = {
|
|
"Ernie4_5_MoeForCausalLM": Ernie4_5_PretrainedModel,
|
|
"Ernie4_5_MTPForCausalLM": Ernie4_5_MTPPretrainedModel,
|
|
"Qwen2ForCausalLM": Qwen2PretrainedModel,
|
|
"Qwen3ForCausalLM": Qwen3PretrainedModel,
|
|
"Qwen3MoeForCausalLM": Qwen3MoePretrainedModel,
|
|
"Ernie4_5_ForCausalLM": Ernie4_5_PretrainedModel,
|
|
"DeepseekV3ForCausalLM": DeepSeekV3PretrainedModel,
|
|
}
|
|
|
|
|
|
def get_model_from_loader(fd_config: FDConfig) -> nn.Layer:
|
|
""" load or download model """
|
|
model_loader = DefaultModelLoader(fd_config.load_config)
|
|
model = model_loader.load_model(fd_config)
|
|
return model
|
|
|
|
|
|
class BaseModelLoader(ABC):
|
|
""" Base class for model loaders. """
|
|
|
|
def __init__(self, load_config: LoadConfig):
|
|
self.load_config = load_config
|
|
|
|
@abstractmethod
|
|
def download_model(self, load_config: ModelConfig) -> None:
|
|
""" Download a model so that it can be immediately loaded."""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def load_model(self, fd_config: FDConfig) -> nn.Layer:
|
|
""" Load a model with the given configurations."""
|
|
raise NotImplementedError
|
|
|
|
|
|
class DefaultModelLoader(BaseModelLoader):
|
|
""" ModelLoader that can load registered models """
|
|
|
|
def __init__(self, load_config: LoadConfig):
|
|
super().__init__(load_config)
|
|
|
|
def download_model(self, model_config: ModelConfig) -> None:
|
|
pass
|
|
|
|
def clean_memory_fragments(self, state_dict: dict) -> None:
|
|
"""clean_memory_fragments"""
|
|
if current_platform.is_cuda():
|
|
if state_dict:
|
|
for k, v in state_dict.items():
|
|
if isinstance(v, paddle.Tensor):
|
|
v.value().get_tensor()._clear()
|
|
paddle.device.cuda.empty_cache()
|
|
paddle.device.synchronize()
|
|
|
|
def load_model(self, fd_config: FDConfig) -> nn.Layer:
|
|
context = paddle.LazyGuard()
|
|
architectures = fd_config.model_config.architectures[0]
|
|
# TODO(gongshaotian): Now, only support safetensor
|
|
model_class = MODEL_CLASSES[architectures]
|
|
|
|
with context:
|
|
model_cls = ModelRegistry.get_class(architectures)
|
|
model = model_cls(fd_config)
|
|
|
|
model.eval()
|
|
|
|
# RL model not need set_state_dict
|
|
if fd_config.load_config.dynamic_load_weight:
|
|
return model
|
|
|
|
state_dict = load_composite_checkpoint(
|
|
fd_config.parallel_config.model_name_or_path,
|
|
model_class,
|
|
fd_config,
|
|
return_numpy=True,
|
|
)
|
|
model.set_state_dict(state_dict)
|
|
self.clean_memory_fragments(state_dict)
|
|
return model
|