mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
172 lines
6.1 KiB
Python
172 lines
6.1 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
from typing import Optional
|
|
|
|
import paddle
|
|
from paddleformers.utils.log import logger
|
|
|
|
import fastdeploy
|
|
from fastdeploy.platforms.utils import convert_to_npu_dequant_scale
|
|
|
|
from ..utils import get_tensor
|
|
from .quant_base import QuantConfigBase, QuantMethodBase
|
|
|
|
|
|
class W8A8Config(QuantConfigBase):
|
|
"""
|
|
quantization config for weight 8bits and activation 8bits
|
|
"""
|
|
|
|
def __init__(self, weight_scale_dict, act_scale_dict, use_gemm_dequant,
|
|
use_smooth_quant) -> None:
|
|
super().__init__()
|
|
self.weight_scale_dict = weight_scale_dict
|
|
self.act_scale_dict = act_scale_dict
|
|
self.use_gemm_dequant = use_gemm_dequant
|
|
self.use_smooth_quant = use_smooth_quant
|
|
self.quant_max_bound = 127
|
|
self.quant_min_bound = -127
|
|
self.quant_round_type = 0
|
|
|
|
def name(self) -> str:
|
|
return "w8a8"
|
|
|
|
@classmethod
|
|
def from_config(cls, config: dict) -> "W8A8Config":
|
|
weight_scale_dict = config["weight_scale_dict"]
|
|
act_scale_dict = config["act_scale_dict"]
|
|
use_gemm_dequant = config["use_gemm_dequant"]
|
|
return cls(weight_scale_dict, act_scale_dict, use_gemm_dequant)
|
|
|
|
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
|
|
return W8A8LinearMethod(self)
|
|
|
|
|
|
class W8A8LinearMethod(QuantMethodBase):
|
|
"""
|
|
quantization method for weight 8bits and activation 8bits of linear layer
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
quant_config: W8A8Config,
|
|
) -> None:
|
|
super().__init__()
|
|
self.quant_config = quant_config
|
|
self.smooth_quant_method = SmoothQuantLinearMethod(quant_config)
|
|
|
|
def create_weights(self, layer):
|
|
layer.linear_weight_shape.reverse()
|
|
layer.weight_dtype = "int8"
|
|
if self.quant_config.use_smooth_quant:
|
|
self.smooth_quant_method.create_weights(layer)
|
|
weight_scale = self.quant_config.weight_scale_dict.get(layer.prefix +
|
|
".weight_scale")
|
|
in_scale = self.quant_config.act_scale_dict.get(layer.prefix +
|
|
".activation_scale")
|
|
self.skip_quant = False
|
|
if weight_scale is None or in_scale is None:
|
|
self.skip_quant = True
|
|
return
|
|
|
|
max_range = 127.0
|
|
linear_out_scale = paddle.to_tensor(
|
|
weight_scale /
|
|
(max_range * max_range * in_scale)).astype("float32")
|
|
layer.linear_out_scale = layer.create_parameter(
|
|
shape=[layer.embed_dim],
|
|
dtype="float32",
|
|
is_bias=False,
|
|
default_initializer=paddle.nn.initializer.Constant(0),
|
|
)
|
|
layer.linear_out_scale.set_value(
|
|
convert_to_npu_dequant_scale(linear_out_scale))
|
|
|
|
def process_loaded_weights(self, layer, weights) -> None:
|
|
if self.quant_config.use_smooth_quant:
|
|
self.smooth_quant_method.process_loaded_weights(layer, weights)
|
|
if self.skip_quant:
|
|
logger.debug(f"{layer.prefix} skip quant")
|
|
weight_tensor = weights.cast(layer._dtype)
|
|
layer.linear_weight.set_value(weight_tensor)
|
|
else:
|
|
weight_tensor = weights.transpose([1, 0])
|
|
weight_tensor = paddle.cast(weight_tensor, "int8")
|
|
layer.linear_weight.set_value(weight_tensor)
|
|
|
|
def apply(self, layer, x):
|
|
if self.skip_quant:
|
|
linear_out = paddle.matmul(x, layer.linear_weight, False, True)
|
|
return linear_out
|
|
if self.quant_config.use_gemm_dequant:
|
|
linear_out = fastdeploy.model_executor.ops.gpu.gemm_dequant(
|
|
x, layer.linear_weight, layer.linear_out_scale, layer._dtype)
|
|
else:
|
|
linear_out = paddle.matmul(x, layer.linear_weight, False, True)
|
|
linear_out = fastdeploy.model_executor.ops.gpu.dequant_int8(
|
|
linear_out, layer.linear_out_scale, layer._dtype)
|
|
return linear_out
|
|
|
|
|
|
class SmoothQuantLinearMethod(QuantMethodBase):
|
|
"""
|
|
SmoothQuant Method
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
quant_config: QuantConfigBase,
|
|
) -> None:
|
|
super().__init__()
|
|
self.quant_config = quant_config
|
|
|
|
def create_weights(self, layer):
|
|
linear_shift_shape = [layer.output_size]
|
|
linear_smooth_shape = [layer.output_size]
|
|
layer.linear_shift = self.create_parameter(
|
|
shape=linear_shift_shape,
|
|
dtype=layer._dtype,
|
|
is_bias=False,
|
|
)
|
|
layer.linear_smooth = layer.create_parameter(
|
|
shape=linear_smooth_shape,
|
|
dtype=layer._dtype,
|
|
is_bias=False,
|
|
)
|
|
|
|
def process_loaded_weights(self, layer, weights) -> None:
|
|
if layer.shift_key in layer.state_dict:
|
|
shift_tensor = get_tensor(layer.state_dict.pop(
|
|
layer.shift_key)).astype(paddle.get_default_dtype())
|
|
else:
|
|
shift_tensor = paddle.zeros(
|
|
shape=layer.linear_shift_shape,
|
|
dtype=paddle.get_default_dtype(),
|
|
)
|
|
layer.linear_shift.set_value(shift_tensor)
|
|
if layer.smooth_key in layer.state_dict:
|
|
smooth_tensor = get_tensor(layer.state_dict.pop(
|
|
layer.smooth_key)).astype(paddle.get_default_dtype())
|
|
else:
|
|
smooth_tensor = paddle.ones(
|
|
shape=[layer.linear_smooth_shape],
|
|
dtype=paddle.get_default_dtype(),
|
|
)
|
|
layer.linear_smooth.set_value(smooth_tensor)
|
|
|
|
def apply(self, layer, x):
|
|
pass
|