mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-03 15:56:49 +08:00
43 lines
1.4 KiB
Python
43 lines
1.4 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
from typing import Optional
|
|
|
|
from ..moe import FusedMoE
|
|
from .quant_base import QuantConfigBase, QuantMethodBase
|
|
|
|
|
|
class W4A8Config(QuantConfigBase):
|
|
"""
|
|
quantization config for weight 4bits and activation 8bits
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def name(self) -> str:
|
|
return "w4a8"
|
|
|
|
@classmethod
|
|
def from_config(cls, config: dict) -> "W4A8Config":
|
|
return cls()
|
|
|
|
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
|
|
if isinstance(layer, FusedMoE):
|
|
from fastdeploy.model_executor.layers.moe.fused_moe_cutlass_backend import CutlassW4A8MoEMethod
|
|
return CutlassW4A8MoEMethod(self)
|
|
else:
|
|
raise ValueError(f"Unsupported layer type {type(layer)} for w4a8")
|