Files
FastDeploy/fastdeploy/model_executor/layers/quantization/mix_quant.py
Yuanle Liu 240bdac2a4
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
[feat] support fa3 backend for pd disaggregated (#2695)
* support fa3 backend run in pd disaggregated

* support fa3 backend run in pd disaggregated

* support fa3 backend run in pd disaggregated

* support fa3 backend run in pd disaggregated

* delete use_fast_ffn
2025-07-03 22:33:27 +08:00

77 lines
2.8 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Optional
from fastdeploy.model_executor.layers.attention.attention import Attention
from fastdeploy.model_executor.layers.moe.moe import FusedMoE
from . import get_quantization_config
from .quant_base import QuantConfigBase, QuantMethodBase
class MixQuantConfig(QuantConfigBase):
"""
Quantization config for layers that has different quantization methods.
"""
def __init__(
self,
dense_quant_type: str,
moe_quant_type: str,
kv_cache_quant_type: str = None,
image_moe_quant_type: str = None,
) -> None:
super().__init__()
self.dense_quant_type = dense_quant_type
self.moe_quant_type = moe_quant_type
self.kv_cache_quant_type = kv_cache_quant_type
if image_moe_quant_type is None:
self.image_moe_quant_type = moe_quant_type
else:
self.image_moe_quant_type = image_moe_quant_type
self.quant_max_bound = 0
self.quant_min_bound = 0
self.quant_round_type = 0
def name(self) -> str:
return "mix_quant"
@classmethod
def from_config(cls, config: dict) -> "MixQuantConfig":
return cls(config['dense_quant_type'], config['moe_quant_type'],
config.get('kv_cache_quant_type', None),
config.get('image_moe_quant_type', None))
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
if isinstance(layer, FusedMoE):
if layer.moe_tag == "Image":
return get_quantization_config(
self.image_moe_quant_type).from_config(
{}).get_quant_method(layer)
else:
return get_quantization_config(
self.moe_quant_type).from_config(
{}).get_quant_method(layer)
elif isinstance(layer, Attention):
if self.kv_cache_quant_type is not None:
return (get_quantization_config("kvcache").from_config(
self.kv_cache_quant_type).get_quant_method(layer))
else:
return None
else:
return get_quantization_config(self.dense_quant_type).from_config(
{}).get_quant_method(layer)