mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-30 22:32:30 +08:00
161 lines
5.5 KiB
Python
161 lines
5.5 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
from enum import Enum
|
|
from typing import Optional
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
|
|
from fastdeploy.model_executor.layers.utils import get_tensor
|
|
|
|
from ..utils import create_and_set_parameter
|
|
from .quant_base import QuantConfigBase, QuantMethodBase
|
|
|
|
|
|
class KvCacheQuantzationTypes(str, Enum):
|
|
"""
|
|
KvCacheQuantzationTypes
|
|
"""
|
|
INT8 = "int8"
|
|
FP8 = "float8_e4m3fn"
|
|
INT8_ZP = "int8_zp"
|
|
FP8_ZP = "float8_e4m3fn_zp"
|
|
|
|
|
|
class KvCacheQuantConfig(QuantConfigBase):
|
|
"""
|
|
quantization config for weight 4bits and activation fp8
|
|
"""
|
|
|
|
def __init__(self, kv_cache_quant_type: str) -> None:
|
|
"""
|
|
__init__
|
|
"""
|
|
super().__init__()
|
|
self.kv_cache_quant_type = kv_cache_quant_type
|
|
|
|
try:
|
|
self.quant_type = KvCacheQuantzationTypes(kv_cache_quant_type)
|
|
except ValueError:
|
|
raise ValueError(f'Invalid Kvcache type: {kv_cache_quant_type}')
|
|
|
|
self.has_zero_point = "zp" in kv_cache_quant_type
|
|
|
|
if self.quant_type == KvCacheQuantzationTypes.INT8 or self.quant_type == KvCacheQuantzationTypes.INT8_ZP:
|
|
self.max_bound = 127.0
|
|
elif self.quant_type == KvCacheQuantzationTypes.FP8 or self.quant_type == KvCacheQuantzationTypes.FP8_ZP:
|
|
self.max_bound = 448.0
|
|
else:
|
|
raise ValueError(f'Invalid Kvcache type: {kv_cache_quant_type}')
|
|
|
|
def name(self) -> str:
|
|
"""
|
|
get_name
|
|
"""
|
|
return "kvcache"
|
|
|
|
@classmethod
|
|
def from_config(cls, kv_cache_quant_type: str) -> "KvCacheQuantConfig":
|
|
"""
|
|
from_config
|
|
"""
|
|
return cls(kv_cache_quant_type)
|
|
|
|
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
|
|
"""
|
|
get_quant_method
|
|
"""
|
|
return KVCacheMethodBase(self)
|
|
|
|
|
|
class KVCacheMethodBase(QuantMethodBase):
|
|
"""
|
|
KVCacheMethodBase
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
quant_config: KvCacheQuantConfig,
|
|
) -> None:
|
|
"""
|
|
KVCacheMethodBase __init__
|
|
"""
|
|
super().__init__()
|
|
self.cache_quant_config = quant_config
|
|
|
|
def load_zp(self, layer: nn.Layer, state_dict):
|
|
"""
|
|
load_zp
|
|
"""
|
|
cache_k_zeropoint = get_tensor(state_dict.pop(self.cache_k_zp_name))
|
|
cache_v_zeropoint = get_tensor(state_dict.pop(self.cache_v_zp_name))
|
|
|
|
create_and_set_parameter(layer, "cache_k_zp", cache_k_zeropoint)
|
|
create_and_set_parameter(layer, "cache_v_zp", cache_v_zeropoint)
|
|
|
|
def load_scale(self, layer: nn.Layer, state_dict):
|
|
"""
|
|
load_scale
|
|
"""
|
|
cache_k_scale_tensor = get_tensor(
|
|
state_dict.pop(self.cache_k_scale_name)).cast(
|
|
paddle.get_default_dtype()).reshape_([-1])
|
|
cache_v_scale_tensor = get_tensor(
|
|
state_dict.pop(self.cache_v_scale_name)).cast(
|
|
paddle.get_default_dtype()).reshape_([-1])
|
|
|
|
cache_k_scale = self.cache_quant_config.max_bound / cache_k_scale_tensor
|
|
cache_v_scale = self.cache_quant_config.max_bound / cache_v_scale_tensor
|
|
cache_k_out_scale = cache_k_scale_tensor / self.cache_quant_config.max_bound
|
|
cache_v_out_scale = cache_v_scale_tensor / self.cache_quant_config.max_bound
|
|
|
|
create_and_set_parameter(layer, "cache_k_scale", cache_k_scale)
|
|
create_and_set_parameter(layer, "cache_v_scale", cache_v_scale)
|
|
create_and_set_parameter(layer, "cache_k_out_scale", cache_k_out_scale)
|
|
create_and_set_parameter(layer, "cache_v_out_scale", cache_v_out_scale)
|
|
|
|
def create_weights(self, layer: nn.Layer, state_dict):
|
|
"""
|
|
create_weights
|
|
"""
|
|
self.prefix = layer.prefix
|
|
self.cache_k_scale_name = layer.prefix + ".cachek_matmul.activation_scale"
|
|
self.cache_v_scale_name = layer.prefix + ".cachev_matmul.activation_scale"
|
|
self.cache_k_zp_name = layer.prefix + ".cachek_matmul.activation_zero_point"
|
|
self.cache_v_zp_name = layer.prefix + ".cachev_matmul.activation_zero_point"
|
|
|
|
if self.cache_quant_config.quant_type == KvCacheQuantzationTypes.INT8:
|
|
setattr(layer, "cache_quant_type_str", "cache_int8")
|
|
setattr(layer, "quant_max_bound", 127.0)
|
|
setattr(layer, "quant_min_bound", -127.0)
|
|
elif self.cache_quant_config.quant_type == KvCacheQuantzationTypes.FP8:
|
|
setattr(layer, "cache_quant_type_str", "cache_fp8")
|
|
setattr(layer, "quant_max_bound", 448.0)
|
|
setattr(layer, "quant_min_bound", -448.0)
|
|
else:
|
|
raise NotImplementedError(f"{self.cache_quant_config.quant_type} is not implemented")
|
|
|
|
self.load_scale(layer, state_dict)
|
|
if self.cache_quant_config.has_zero_point:
|
|
self.load_zp(layer, state_dict)
|
|
|
|
def apply(self, layer):
|
|
"""
|
|
apply
|
|
"""
|
|
raise RuntimeError(
|
|
f"{self.__class__.__name__}.apply should not be called.")
|