mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
* support fa3 backend run in pd disaggregated * support fa3 backend run in pd disaggregated * support fa3 backend run in pd disaggregated * support fa3 backend run in pd disaggregated * delete use_fast_ffn
491 lines
18 KiB
Python
491 lines
18 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import math
|
|
import os
|
|
from dataclasses import dataclass, field
|
|
from typing import TYPE_CHECKING, List, Optional, Tuple
|
|
|
|
import paddle
|
|
from paddle.nn.functional.flash_attention import flash_attn_unpadded
|
|
|
|
from fastdeploy.model_executor.layers.attention.ops import (
|
|
get_block_shape_and_split_kv_block, init_signal_layerwise,
|
|
open_shm_and_get_meta_signal)
|
|
from fastdeploy.platforms import current_platform
|
|
|
|
if current_platform.is_cuda():
|
|
from fastdeploy.model_executor.ops.gpu import (decode_mla_write_cache,
|
|
multi_head_latent_attention,
|
|
prefill_mla_write_cache)
|
|
|
|
if TYPE_CHECKING:
|
|
from paddle._typing.dtype_like import _DTypeLiteral
|
|
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.model_executor.layers.attention.attention import Attention
|
|
from fastdeploy.model_executor.layers.attention.base_attention_backend import (
|
|
AttentionBackend, AttentionMetadata)
|
|
from fastdeploy.worker.forward_meta import ForwardMeta
|
|
|
|
|
|
def yarn_get_mscale(scale=1, mscale=1):
|
|
"""
|
|
"""
|
|
if scale <= 1:
|
|
return 1.0
|
|
return 0.1 * mscale * math.log(scale) + 1.0
|
|
|
|
|
|
@dataclass
|
|
class MLAAttentionMetadata(AttentionMetadata):
|
|
"""
|
|
MLAAttentionMetadata for Multi-Layer Attention
|
|
"""
|
|
max_len_kv: paddle.Tensor = None
|
|
set_max_lengths: int = -1
|
|
encoder_batch_ids: paddle.Tensor = None
|
|
encoder_tile_ids_per_batch: paddle.Tensor = None
|
|
encoder_num_blocks: paddle.Tensor = None
|
|
kv_batch_ids: paddle.Tensor = None
|
|
kv_tile_ids_per_batch: paddle.Tensor = None
|
|
kv_num_blocks: paddle.Tensor = None
|
|
decoder_batch_ids: paddle.Tensor = None
|
|
decoder_tile_ids_per_batch: paddle.Tensor = None
|
|
decoder_num_blocks: paddle.Tensor = None
|
|
|
|
_dtype: _DTypeLiteral = paddle.bfloat16
|
|
encoder_max_partition_size: int = 32768
|
|
max_partition_size: int = 32768
|
|
block_tables: Optional[paddle.Tensor] = None
|
|
rotary_embs: Optional[paddle.Tensor] = None
|
|
attn_mask: Optional[paddle.Tensor] = None
|
|
encoder_block_shape_q: Optional[paddle.Tensor] = None
|
|
decoder_block_shape_q: Optional[paddle.Tensor] = None
|
|
_fuse_kernel_compute_dtype: str = "bf16"
|
|
|
|
# pd_disaggregation
|
|
kv_signal_metadata: Optional[paddle.Tensor] = None
|
|
kv_signal_data_list: List[paddle.Tensor] = field(default_factory=list)
|
|
|
|
|
|
class MLAAttentionBackend(AttentionBackend):
|
|
"""
|
|
MLA Attention Backend implementation.
|
|
"""
|
|
|
|
def __init__(self, fd_config: FDConfig, kv_num_heads: int, num_heads: int,
|
|
head_dim: int) -> None:
|
|
"""
|
|
MLAAttentionBackend __init__
|
|
"""
|
|
super().__init__()
|
|
self.attention_metadata: MLAAttentionMetadata = None
|
|
|
|
# 基础配置
|
|
self.block_size: int = fd_config.parallel_config.block_size
|
|
self.max_seq_len: int = fd_config.parallel_config.max_model_len
|
|
self.rope_theta: float = (10000.0
|
|
if fd_config.model_config.rope_theta is None
|
|
else fd_config.model_config.rope_theta)
|
|
self.rope_3d: bool = getattr(fd_config.model_config, "rope_3d", False)
|
|
self.causal: bool = getattr(fd_config.model_config, "causal", True)
|
|
self.speculative_method: str = fd_config.speculative_config.method
|
|
self.use_speculate: bool = self.speculative_method is not None
|
|
self.speculate_max_draft_token_num: int = fd_config.speculative_config.num_speculative_tokens
|
|
self.keep_pd_step_flag: bool = fd_config.speculative_config.model_type == "mtp"
|
|
self.rank: int = fd_config.parallel_config.tensor_parallel_rank
|
|
|
|
self.kv_num_heads: int = kv_num_heads
|
|
self.num_heads: int = num_heads
|
|
self.head_dim: int = fd_config.model_config.head_dim
|
|
self.num_layers: int = fd_config.model_config.num_layers
|
|
|
|
# For Multi Head Latent Attention
|
|
self.kv_lora_rank: int = fd_config.model_config.deepseekv3.kv_lora_rank
|
|
self.qk_rope_head_dim: int = fd_config.model_config.deepseekv3.qk_rope_head_dim
|
|
self.qk_head_dim: int = fd_config.model_config.deepseekv3.qk_nope_head_dim \
|
|
+ fd_config.model_config.deepseekv3.qk_rope_head_dim
|
|
self.attn_softmax_scale: float = self.qk_head_dim**-0.5
|
|
if fd_config.model_config.deepseekv3.rope_scaling:
|
|
mscale_all_dim = fd_config.model_config.deepseekv3.rope_scaling.get(
|
|
"mscale_all_dim", False) # 1.0
|
|
scaling_factor = fd_config.model_config.deepseekv3.rope_scaling[
|
|
"factor"] # 40
|
|
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
|
|
self.attn_softmax_scale = self.attn_softmax_scale * mscale * mscale
|
|
|
|
# pd_disaggregation
|
|
self.use_pd_disaggregation: int = int(
|
|
os.getenv("FLAGS_use_pd_disaggregation", 0))
|
|
self.start_layer_index: int = fd_config.model_config.start_layer_index
|
|
self.device_id: int = os.getenv("CUDA_VISIBLE_DEVICES", None)
|
|
if self.device_id is None:
|
|
self.device_id = self.rank
|
|
else:
|
|
self.device_id = self.device_id.split(",")[self.rank]
|
|
|
|
def init_attention_metadata(self, forward_meta: ForwardMeta):
|
|
"""Initialize attention metadata hence all layers in the forward pass can reuse it."""
|
|
metadata = MLAAttentionMetadata()
|
|
metadata.encoder_block_shape_q = 64
|
|
metadata.decoder_block_shape_q = 16
|
|
metadata.max_partition_size = 32768
|
|
metadata.encoder_max_partition_size = self.max_seq_len
|
|
metadata._dtype = paddle.get_default_dtype()
|
|
if metadata._dtype == "bfloat16":
|
|
metadata._fuse_kernel_compute_dtype = "bf16"
|
|
elif metadata._dtype == "float16":
|
|
metadata._fuse_kernel_compute_dtype = "fp16"
|
|
elif metadata._dtype == "float32":
|
|
metadata._fuse_kernel_compute_dtype = "fp32"
|
|
|
|
metadata.block_tables = forward_meta.block_tables
|
|
metadata.rotary_embs = forward_meta.rotary_embs
|
|
metadata.attn_mask = forward_meta.attn_mask
|
|
metadata.pre_caches_length = forward_meta.pre_caches_length
|
|
|
|
(
|
|
metadata.encoder_batch_ids,
|
|
metadata.encoder_tile_ids_per_batch,
|
|
metadata.encoder_num_blocks,
|
|
metadata.kv_batch_ids,
|
|
metadata.kv_tile_ids_per_batch,
|
|
metadata.kv_num_blocks,
|
|
metadata.decoder_batch_ids,
|
|
metadata.decoder_tile_ids_per_batch,
|
|
metadata.decoder_num_blocks,
|
|
metadata.max_len_kv,
|
|
metadata.set_max_lengths,
|
|
) = get_block_shape_and_split_kv_block(
|
|
forward_meta.seq_lens_encoder,
|
|
forward_meta.seq_lens_decoder,
|
|
forward_meta.seq_lens_this_time,
|
|
forward_meta.cum_offsets,
|
|
metadata.encoder_block_shape_q,
|
|
metadata.decoder_block_shape_q,
|
|
self.num_heads // self.kv_num_heads,
|
|
self.block_size,
|
|
self.speculate_max_draft_token_num + 1,
|
|
)
|
|
|
|
# MLA
|
|
metadata.max_enc_len_this_time = metadata.set_max_lengths[1]
|
|
metadata.max_dec_len_this_time = metadata.set_max_lengths[2]
|
|
|
|
# pd_disaggregation
|
|
metadata.kv_signal_data_list = [None] * self.num_layers
|
|
if self.use_pd_disaggregation:
|
|
metadata.kv_signal_metadata = open_shm_and_get_meta_signal(
|
|
self.rank, int(self.device_id), self.keep_pd_step_flag)
|
|
|
|
self.attention_metadata: AttentionMetadata = metadata
|
|
|
|
def get_attntion_meta(self) -> AttentionMetadata:
|
|
"""get_attntion_meta"""
|
|
return self.attention_metadata
|
|
|
|
def get_kv_cache_shape(self,
|
|
max_num_blocks: int) -> Tuple[int, int, int, int]:
|
|
"""
|
|
Calculate kv cache shape for MLA
|
|
"""
|
|
return (max_num_blocks, 1, self.block_size,
|
|
self.kv_lora_rank + self.qk_rope_head_dim)
|
|
|
|
def forward_extend(
|
|
self,
|
|
q: paddle.Tensor,
|
|
k: paddle.Tensor,
|
|
v: paddle.Tensor,
|
|
qkv: paddle.Tensor,
|
|
compressed_kv: paddle.Tensor,
|
|
k_pe: paddle.Tensor,
|
|
layer: Attention,
|
|
forward_meta: ForwardMeta,
|
|
) -> paddle.Tensor:
|
|
"""
|
|
Prefill阶段的前向传播
|
|
"""
|
|
metadata = self.attention_metadata
|
|
|
|
if self.use_pd_disaggregation:
|
|
metadata.kv_signal_data_list[
|
|
layer.layer_id] = init_signal_layerwise(
|
|
metadata.kv_signal_metadata,
|
|
layer.layer_id + self.start_layer_index)
|
|
|
|
latent_cache = forward_meta.caches[layer.layer_id] if hasattr(
|
|
forward_meta, 'caches') else None
|
|
|
|
# 写入缓存
|
|
prefill_mla_write_cache(
|
|
compressed_kv,
|
|
k_pe,
|
|
latent_cache,
|
|
forward_meta.seq_lens_encoder,
|
|
forward_meta.seq_lens_decoder,
|
|
forward_meta.padding_offset,
|
|
forward_meta.cum_offsets,
|
|
metadata.block_tables,
|
|
"none",
|
|
getattr(forward_meta, 'max_input_length', -1),
|
|
)
|
|
|
|
# Flash注意力计算
|
|
fmha_out = flash_attn_unpadded(
|
|
q,
|
|
k,
|
|
v,
|
|
forward_meta.cu_seqlens_q,
|
|
forward_meta.cu_seqlens_k,
|
|
metadata.max_enc_len_this_time,
|
|
metadata.max_enc_len_this_time,
|
|
self.attn_softmax_scale,
|
|
causal=True,
|
|
training=False,
|
|
)[0]
|
|
|
|
return fmha_out
|
|
|
|
def forward_decode(
|
|
self,
|
|
q: paddle.Tensor,
|
|
k: paddle.Tensor,
|
|
v: paddle.Tensor,
|
|
qkv: paddle.Tensor,
|
|
compressed_kv: paddle.Tensor,
|
|
k_pe: paddle.Tensor,
|
|
layer: Attention,
|
|
forward_meta: ForwardMeta,
|
|
) -> paddle.Tensor:
|
|
"""
|
|
Decode阶段的前向传播
|
|
"""
|
|
metadata = self.attention_metadata
|
|
|
|
if self.use_pd_disaggregation:
|
|
metadata.kv_signal_data_list[
|
|
layer.layer_id] = init_signal_layerwise(
|
|
metadata.kv_signal_metadata,
|
|
layer.layer_id + self.start_layer_index)
|
|
|
|
latent_cache = forward_meta.caches[layer.layer_id] if hasattr(
|
|
forward_meta, 'caches') else None
|
|
|
|
# 获取推测解码参数
|
|
speculate_decoder = self.speculative_method is not None
|
|
speculate_max_tokens = self.speculate_max_draft_token_num
|
|
|
|
# 写入缓存
|
|
decode_mla_write_cache(
|
|
compressed_kv,
|
|
k_pe,
|
|
latent_cache,
|
|
forward_meta.seq_lens_decoder,
|
|
forward_meta.seq_lens_encoder,
|
|
forward_meta.padding_offset,
|
|
forward_meta.cum_offsets,
|
|
metadata.block_tables,
|
|
"none",
|
|
self.max_seq_len,
|
|
speculate_decoder,
|
|
)
|
|
|
|
# 多头潜在注意力计算
|
|
fmha_out = multi_head_latent_attention(
|
|
q,
|
|
latent_cache,
|
|
latent_cache,
|
|
forward_meta.seq_lens_encoder,
|
|
forward_meta.seq_lens_decoder,
|
|
forward_meta.seq_lens_this_time,
|
|
forward_meta.cu_seqlens_q,
|
|
forward_meta.padding_offset,
|
|
forward_meta.cum_offsets,
|
|
metadata.block_tables,
|
|
metadata.encoder_batch_ids,
|
|
metadata.encoder_tile_ids_per_batch,
|
|
metadata.encoder_num_blocks,
|
|
metadata.kv_batch_ids,
|
|
metadata.kv_tile_ids_per_batch,
|
|
metadata.kv_num_blocks,
|
|
metadata.decoder_batch_ids,
|
|
metadata.decoder_tile_ids_per_batch,
|
|
metadata.decoder_num_blocks,
|
|
metadata.
|
|
decoder_num_blocks, # PaddleNLP 传入的是 decoder_num_blocks_cpu
|
|
metadata.max_enc_len_this_time,
|
|
metadata.max_dec_len_this_time,
|
|
metadata.max_len_kv,
|
|
None, # attn_mask
|
|
None, # qkv_bias
|
|
None, # qkv_out_scales
|
|
None, # cache_k_quant_scales
|
|
None, # cache_v_quant_scales
|
|
None, # cache_k_dequant_scales
|
|
None, # cache_v_dequant_scales
|
|
None, # cache_k_zp
|
|
None, # cache_v_zp
|
|
None, # out_shifts
|
|
None, # out_smooths
|
|
metadata._fuse_kernel_compute_dtype,
|
|
"none", # cache_quant_type
|
|
self.kv_lora_rank,
|
|
self.max_seq_len,
|
|
self.attn_softmax_scale,
|
|
0.0, # quant_max_bound
|
|
0.0, # quant_min_bound
|
|
0.0, # out_linear_in_scale
|
|
speculate_max_tokens,
|
|
True, # causal
|
|
speculate_decoder,
|
|
)
|
|
|
|
return fmha_out
|
|
|
|
def forward_mixed(
|
|
self,
|
|
q: paddle.Tensor,
|
|
k: paddle.Tensor,
|
|
v: paddle.Tensor,
|
|
qkv: paddle.Tensor,
|
|
compressed_kv: paddle.Tensor,
|
|
k_pe: paddle.Tensor,
|
|
layer: Attention,
|
|
forward_meta: ForwardMeta,
|
|
) -> paddle.Tensor:
|
|
"""
|
|
Mixed模式的前向传播
|
|
"""
|
|
metadata = self.attention_metadata
|
|
speculate_decoder = self.speculative_method is not None
|
|
speculate_max_tokens = self.speculate_max_draft_token_num
|
|
|
|
decode_stage = forward_meta.is_decode_batch
|
|
prefill_stage = not (forward_meta.is_decode_batch)
|
|
|
|
if self.use_pd_disaggregation:
|
|
metadata.kv_signal_data_list[
|
|
layer.layer_id] = init_signal_layerwise(
|
|
metadata.kv_signal_metadata,
|
|
layer.layer_id + self.start_layer_index)
|
|
|
|
latent_cache = forward_meta.caches[layer.layer_id] if hasattr(
|
|
forward_meta, 'caches') else None
|
|
|
|
if prefill_stage:
|
|
# 写入缓存
|
|
prefill_mla_write_cache(
|
|
compressed_kv,
|
|
k_pe,
|
|
latent_cache,
|
|
forward_meta.seq_lens_encoder,
|
|
forward_meta.seq_lens_decoder,
|
|
forward_meta.padding_offset,
|
|
forward_meta.cum_offsets,
|
|
metadata.block_tables,
|
|
"none",
|
|
self.max_seq_len,
|
|
)
|
|
|
|
# FA
|
|
fmha_out = flash_attn_unpadded(
|
|
q,
|
|
k,
|
|
v,
|
|
forward_meta.cu_seqlens_q,
|
|
forward_meta.cu_seqlens_k,
|
|
metadata.max_enc_len_this_time,
|
|
metadata.max_enc_len_this_time,
|
|
self.attn_softmax_scale,
|
|
causal=True,
|
|
training=False,
|
|
)[0]
|
|
|
|
return fmha_out
|
|
|
|
# Decode
|
|
if decode_stage:
|
|
# mla写入缓存
|
|
decode_mla_write_cache(
|
|
compressed_kv,
|
|
k_pe,
|
|
latent_cache,
|
|
forward_meta.seq_lens_decoder,
|
|
forward_meta.seq_lens_encoder,
|
|
forward_meta.padding_offset,
|
|
forward_meta.cum_offsets,
|
|
metadata.block_tables,
|
|
"none",
|
|
self.max_seq_len,
|
|
speculate_decoder,
|
|
)
|
|
|
|
# 多头潜在注意力计算
|
|
fmha_out = multi_head_latent_attention(
|
|
q,
|
|
latent_cache,
|
|
latent_cache,
|
|
forward_meta.seq_lens_encoder,
|
|
forward_meta.seq_lens_decoder,
|
|
forward_meta.seq_lens_this_time,
|
|
forward_meta.cu_seqlens_q,
|
|
forward_meta.padding_offset,
|
|
forward_meta.cum_offsets,
|
|
metadata.block_tables,
|
|
metadata.encoder_batch_ids,
|
|
metadata.encoder_tile_ids_per_batch,
|
|
metadata.encoder_num_blocks,
|
|
metadata.kv_batch_ids,
|
|
metadata.kv_tile_ids_per_batch,
|
|
metadata.kv_num_blocks,
|
|
metadata.decoder_batch_ids,
|
|
metadata.decoder_tile_ids_per_batch,
|
|
metadata.decoder_num_blocks,
|
|
metadata.
|
|
decoder_num_blocks, # PaddleNLP 传入的是 decoder_num_blocks_cpu
|
|
metadata.max_enc_len_this_time,
|
|
metadata.max_dec_len_this_time,
|
|
metadata.max_len_kv,
|
|
None, # attn_mask
|
|
None, # qkv_bias
|
|
None, # qkv_out_scales
|
|
None, # cache_k_quant_scales
|
|
None, # cache_v_quant_scales
|
|
None, # cache_k_dequant_scales
|
|
None, # cache_v_dequant_scales
|
|
None, # cache_k_zp
|
|
None, # cache_v_zp
|
|
None, # out_shifts
|
|
None, # out_smooths
|
|
metadata._fuse_kernel_compute_dtype,
|
|
"none", # cache_quant_type
|
|
self.kv_lora_rank,
|
|
self.max_seq_len,
|
|
self.attn_softmax_scale,
|
|
0.0, # quant_max_bound
|
|
0.0, # quant_min_bound
|
|
0.0, # out_linear_in_scale
|
|
speculate_max_tokens,
|
|
True, # causal
|
|
speculate_decoder,
|
|
)
|
|
|
|
return fmha_out
|