mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
* support fa3 backend run in pd disaggregated * support fa3 backend run in pd disaggregated * support fa3 backend run in pd disaggregated * support fa3 backend run in pd disaggregated * delete use_fast_ffn
244 lines
9.0 KiB
Python
244 lines
9.0 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import os
|
|
from dataclasses import dataclass, field
|
|
from typing import List, Optional
|
|
|
|
import paddle
|
|
from paddle.nn.functional.flash_attention import flash_attention_v3_varlen
|
|
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.model_executor.layers.attention.attention import Attention
|
|
from fastdeploy.model_executor.layers.attention.base_attention_backend import (
|
|
AttentionBackend, AttentionMetadata)
|
|
from fastdeploy.model_executor.layers.attention.ops import (
|
|
get_block_shape_and_split_kv_block, gqa_rope_write_cache,
|
|
init_signal_layerwise, open_shm_and_get_meta_signal, pre_cache_len_concat)
|
|
from fastdeploy.worker.forward_meta import ForwardMeta
|
|
|
|
|
|
@dataclass
|
|
class FlashAttentionMetadata(AttentionMetadata):
|
|
"""
|
|
FlashAttentionMetadata
|
|
"""
|
|
max_len_kv: paddle.Tensor = None
|
|
set_max_lengths: int = -1
|
|
rotary_embs: Optional[paddle.Tensor] = None
|
|
block_tables: Optional[paddle.Tensor] = None
|
|
encoder_batch_ids: paddle.Tensor = None
|
|
encoder_tile_ids_per_batch: paddle.Tensor = None
|
|
encoder_num_blocks: paddle.Tensor = None
|
|
kv_batch_ids: paddle.Tensor = None
|
|
kv_tile_ids_per_batch: paddle.Tensor = None
|
|
kv_num_blocks: paddle.Tensor = None
|
|
decoder_batch_ids: paddle.Tensor = None
|
|
decoder_tile_ids_per_batch: paddle.Tensor = None
|
|
decoder_num_blocks: paddle.Tensor = None
|
|
|
|
encoder_block_shape_q: Optional[paddle.Tensor] = None
|
|
decoder_block_shape_q: Optional[paddle.Tensor] = None
|
|
|
|
cu_seqlens_q: paddle.Tensor = None
|
|
cu_seqlens_k: paddle.Tensor = None
|
|
max_seqlen_q: int = 0
|
|
max_seqlen_k: int = 0
|
|
|
|
pre_cache_batch_ids = None
|
|
pre_cache_tile_ids_per_batch = None
|
|
pre_cache_num_blocks_cpu = None
|
|
kv_token_num_cpu = None
|
|
|
|
# pd_disaggregation
|
|
kv_signal_metadata: Optional[paddle.Tensor] = None
|
|
kv_signal_data_list: List[paddle.Tensor] = field(default_factory=list)
|
|
|
|
|
|
class FlashAttentionBackend(AttentionBackend):
|
|
"""
|
|
FlashAttentionBackend backend implementation
|
|
"""
|
|
|
|
def __init__(self, fd_config: FDConfig, kv_num_heads: int, num_heads: int,
|
|
head_dim: int):
|
|
"""
|
|
FlashAttentionBackend __init__
|
|
"""
|
|
super().__init__()
|
|
self.attention_metadata: FlashAttentionMetadata = None
|
|
self.max_seq_len = fd_config.parallel_config.max_model_len
|
|
self.causal = getattr(fd_config.model_config, "causal", True)
|
|
|
|
self.kv_num_heads = kv_num_heads
|
|
self.num_heads = num_heads
|
|
self.head_dim = fd_config.model_config.head_dim
|
|
self.hidden_size = fd_config.model_config.hidden_size
|
|
self.block_size = fd_config.parallel_config.block_size
|
|
self.num_layers: int = fd_config.model_config.num_layers
|
|
|
|
self.speculative_method = fd_config.speculative_config.method
|
|
self.use_speculate = self.speculative_method is not None
|
|
self.speculate_max_draft_token_num = fd_config.speculative_config.num_speculative_tokens
|
|
self.keep_pd_step_flag: bool = fd_config.speculative_config.model_type == "mtp"
|
|
self.rank: int = fd_config.parallel_config.tensor_parallel_rank
|
|
|
|
# pd_disaggregation
|
|
self.use_pd_disaggregation: int = int(
|
|
os.getenv("FLAGS_use_pd_disaggregation", 0))
|
|
self.start_layer_index: int = fd_config.model_config.start_layer_index
|
|
self.device_id: int = os.getenv("CUDA_VISIBLE_DEVICES", None)
|
|
|
|
if fd_config.parallel_config.expert_parallel_rank is None:
|
|
fd_config.parallel_config.expert_parallel_rank = 0
|
|
device_id = self.rank + fd_config.parallel_config.tensor_parallel_degree * \
|
|
fd_config.parallel_config.expert_parallel_rank
|
|
if self.device_id is None:
|
|
self.device_id = device_id
|
|
else:
|
|
self.device_id = self.device_id.split(",")[device_id]
|
|
|
|
def get_attntion_meta(self):
|
|
"""get_attntion_meta"""
|
|
return self.attention_metadata
|
|
|
|
def get_kv_cache_shape(
|
|
self,
|
|
max_num_blocks: int,
|
|
):
|
|
"""
|
|
Caculate kv cache shape
|
|
"""
|
|
return (max_num_blocks, self.kv_num_heads, self.block_size,
|
|
self.head_dim)
|
|
|
|
def init_attention_metadata(self, forward_meta: ForwardMeta):
|
|
metadata = FlashAttentionMetadata()
|
|
metadata.encoder_block_shape_q = 64
|
|
metadata.decoder_block_shape_q = 16
|
|
metadata.cu_seqlens_q = forward_meta.cu_seqlens_q
|
|
metadata.rotary_embs = forward_meta.rotary_embs
|
|
metadata.block_tables = forward_meta.block_tables
|
|
(
|
|
metadata.encoder_batch_ids,
|
|
metadata.encoder_tile_ids_per_batch,
|
|
metadata.encoder_num_blocks,
|
|
metadata.kv_batch_ids,
|
|
metadata.kv_tile_ids_per_batch,
|
|
metadata.kv_num_blocks,
|
|
metadata.decoder_batch_ids,
|
|
metadata.decoder_tile_ids_per_batch,
|
|
metadata.decoder_num_blocks,
|
|
metadata.max_len_kv,
|
|
metadata.set_max_lengths,
|
|
) = get_block_shape_and_split_kv_block(
|
|
forward_meta.seq_lens_encoder,
|
|
forward_meta.seq_lens_decoder,
|
|
forward_meta.seq_lens_this_time,
|
|
forward_meta.cum_offsets,
|
|
metadata.encoder_block_shape_q,
|
|
metadata.decoder_block_shape_q,
|
|
self.num_heads // self.kv_num_heads,
|
|
self.block_size,
|
|
self.speculate_max_draft_token_num + 1,
|
|
)
|
|
|
|
(
|
|
metadata.cu_seqlens_k,
|
|
metadata.pre_cache_batch_ids,
|
|
metadata.pre_cache_tile_ids_per_batch,
|
|
metadata.pre_cache_num_blocks_cpu,
|
|
metadata.kv_token_num_cpu,
|
|
) = pre_cache_len_concat(
|
|
forward_meta.seq_lens_decoder,
|
|
forward_meta.seq_lens_this_time,
|
|
metadata.set_max_lengths[2],
|
|
self.block_size,
|
|
)
|
|
|
|
# pd_disaggregation
|
|
metadata.kv_signal_data_list = [None] * self.num_layers
|
|
if self.use_pd_disaggregation:
|
|
metadata.kv_signal_metadata = open_shm_and_get_meta_signal(
|
|
self.rank, int(self.device_id), self.keep_pd_step_flag)
|
|
self.attention_metadata = metadata
|
|
forward_meta.decoder_batch_ids.copy_(metadata.decoder_batch_ids, False)
|
|
forward_meta.decoder_tile_ids_per_batch.copy_(
|
|
metadata.decoder_tile_ids_per_batch, False)
|
|
|
|
def forward_mixed(
|
|
self,
|
|
q: paddle.Tensor,
|
|
k: paddle.Tensor,
|
|
v: paddle.Tensor,
|
|
qkv: paddle.Tensor,
|
|
compressed_kv: paddle.Tensor,
|
|
k_pe: paddle.Tensor,
|
|
layer: Attention,
|
|
forward_meta: ForwardMeta,
|
|
):
|
|
metadata = self.attention_metadata
|
|
|
|
if self.use_pd_disaggregation:
|
|
metadata.kv_signal_data_list[
|
|
layer.layer_id] = init_signal_layerwise(
|
|
metadata.kv_signal_metadata,
|
|
layer.layer_id + self.start_layer_index)
|
|
|
|
q, k, v, _ = gqa_rope_write_cache(
|
|
qkv,
|
|
forward_meta.caches[2 * layer.layer_id],
|
|
forward_meta.caches[2 * layer.layer_id + 1],
|
|
metadata.cu_seqlens_q,
|
|
metadata.cu_seqlens_k,
|
|
metadata.rotary_embs,
|
|
forward_meta.seq_lens_this_time,
|
|
forward_meta.seq_lens_encoder,
|
|
forward_meta.seq_lens_decoder,
|
|
forward_meta.padding_offset,
|
|
forward_meta.cum_offsets,
|
|
metadata.block_tables,
|
|
metadata.kv_batch_ids,
|
|
metadata.kv_tile_ids_per_batch,
|
|
metadata.kv_num_blocks,
|
|
metadata.pre_cache_batch_ids,
|
|
metadata.pre_cache_tile_ids_per_batch,
|
|
metadata.pre_cache_num_blocks_cpu,
|
|
getattr(layer, "cache_k_scale", None),
|
|
getattr(layer, "cache_v_scale", None),
|
|
getattr(layer, "cache_k_out_scale", None),
|
|
getattr(layer, "cache_v_out_scale", None),
|
|
getattr(layer, "cache_k_zp", None),
|
|
getattr(layer, "cache_v_zp", None),
|
|
metadata.kv_signal_data_list[layer.layer_id],
|
|
metadata.kv_token_num_cpu[0],
|
|
self.max_seq_len,
|
|
getattr(layer, "cache_quant_type_str", "none"),
|
|
)
|
|
res = flash_attention_v3_varlen(
|
|
q,
|
|
k,
|
|
v,
|
|
metadata.cu_seqlens_q,
|
|
metadata.cu_seqlens_k,
|
|
max_seqlen_q=metadata.set_max_lengths[0],
|
|
max_seqlen_k=metadata.set_max_lengths[3],
|
|
causal=self.causal,
|
|
)[0].reshape([-1, self.hidden_size])
|
|
return res
|