mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-30 19:36:42 +08:00 
			
		
		
		
	 c7ec14de95
			
		
	
	c7ec14de95
	
	
	
		
			
			* [Model] add vsr serials models Signed-off-by: ChaoII <849453582@qq.com> * [Model] add vsr serials models Signed-off-by: ChaoII <849453582@qq.com> * fix build problem Signed-off-by: ChaoII <849453582@qq.com> * fix code style Signed-off-by: ChaoII <849453582@qq.com> * modify according to review suggestions Signed-off-by: ChaoII <849453582@qq.com> * modify vsr trt example Signed-off-by: ChaoII <849453582@qq.com> * update sr directory * fix BindPPSR * add doxygen comment * add sr unit test * update model file url Signed-off-by: ChaoII <849453582@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			108 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			108 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from .... import FastDeployModel, ModelFormat
 | |
| from .... import c_lib_wrap as C
 | |
| 
 | |
| 
 | |
| class PPMSVSR(FastDeployModel):
 | |
|     def __init__(self,
 | |
|                  model_file,
 | |
|                  params_file,
 | |
|                  runtime_option=None,
 | |
|                  model_format=ModelFormat.PADDLE):
 | |
|         """Load a VSR model exported by PaddleGAN.
 | |
| 
 | |
|         :param model_file: (str)Path of model file, e.g PPMSVSR/inference.pdmodel
 | |
|         :param params_file: (str)Path of parameters file, e.g PPMSVSR/inference.pdiparams
 | |
|         :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
 | |
|         :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
 | |
|         """
 | |
|         super(PPMSVSR, self).__init__(runtime_option)
 | |
| 
 | |
|         assert model_format == ModelFormat.PADDLE, "PPMSVSR model only support model format of ModelFormat.Paddle now."
 | |
|         self._model = C.vision.sr.PPMSVSR(model_file, params_file,
 | |
|                                           self._runtime_option, model_format)
 | |
|         assert self.initialized, "PPMSVSR model initialize failed."
 | |
| 
 | |
|     def predict(self, input_images):
 | |
|         """Predict the super resolution frame sequences for an input frame sequences
 | |
| 
 | |
|         :param input_images: list[numpy.ndarray] The input image data, 3-D array with layout HWC, BGR format
 | |
|         :return: list[numpy.ndarray]
 | |
|         """
 | |
|         assert input_images is not None, "The input image data is None."
 | |
|         return self._model.predict(input_images)
 | |
| 
 | |
| 
 | |
| class EDVR(PPMSVSR):
 | |
|     def __init__(self,
 | |
|                  model_file,
 | |
|                  params_file,
 | |
|                  runtime_option=None,
 | |
|                  model_format=ModelFormat.PADDLE):
 | |
|         """Load a EDVR model exported by PaddleGAN.
 | |
| 
 | |
|         :param model_file: (str)Path of model file, e.g EDVR/inference.pdmodel
 | |
|         :param params_file: (str)Path of parameters file, e.g EDVR/inference.pdiparams
 | |
|         :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
 | |
|         :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
 | |
|         """
 | |
|         super(PPMSVSR, self).__init__(runtime_option)
 | |
| 
 | |
|         assert model_format == ModelFormat.PADDLE, "EDVR model only support model format of ModelFormat.Paddle now."
 | |
|         self._model = C.vision.sr.EDVR(model_file, params_file,
 | |
|                                        self._runtime_option, model_format)
 | |
|         assert self.initialized, "EDVR model initialize failed."
 | |
| 
 | |
|     def predict(self, input_images):
 | |
|         """Predict the super resolution frame sequences for an input frame sequences
 | |
| 
 | |
|         :param input_images: list[numpy.ndarray] The input image data, 3-D array with layout HWC, BGR format
 | |
|         :return: list[numpy.ndarray]
 | |
|         """
 | |
|         assert input_images is not None, "The input image data is None."
 | |
|         return self._model.predict(input_images)
 | |
| 
 | |
| 
 | |
| class BasicVSR(PPMSVSR):
 | |
|     def __init__(self,
 | |
|                  model_file,
 | |
|                  params_file,
 | |
|                  runtime_option=None,
 | |
|                  model_format=ModelFormat.PADDLE):
 | |
|         """Load a EDVR model exported by PaddleGAN.
 | |
| 
 | |
|         :param model_file: (str)Path of model file, e.g BasicVSR/inference.pdmodel
 | |
|         :param params_file: (str)Path of parameters file, e.g BasicVSR/inference.pdiparams
 | |
|         :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
 | |
|         :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
 | |
|         """
 | |
|         super(PPMSVSR, self).__init__(runtime_option)
 | |
| 
 | |
|         assert model_format == ModelFormat.PADDLE, "BasicVSR model only support model format of ModelFormat.Paddle now."
 | |
|         self._model = C.vision.sr.BasicVSR(model_file, params_file,
 | |
|                                            self._runtime_option, model_format)
 | |
|         assert self.initialized, "BasicVSR model initialize failed."
 | |
| 
 | |
|     def predict(self, input_images):
 | |
|         """Predict the super resolution frame sequences for an input frame sequences
 | |
| 
 | |
|         :param input_images: list[numpy.ndarray] The input image data, 3-D array with layout HWC, BGR format
 | |
|         :return: list[numpy.ndarray]
 | |
|         """
 | |
|         assert input_images is not None, "The input image data is None."
 | |
|         return self._model.predict(input_images)
 |