Files
FastDeploy/fastdeploy/model_executor/layers/quantization/kv_cache.py
2025-07-24 12:00:52 +08:00

193 lines
6.8 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from enum import Enum
from typing import Optional
import paddle
from paddle import nn
from fastdeploy.model_executor.layers.utils import get_tensor
from ..utils import create_and_set_parameter
from .quant_base import QuantConfigBase, QuantMethodBase
class KvCacheQuantzationTypes(str, Enum):
"""
KvCacheQuantzationTypes
"""
INT8 = "int8"
FP8 = "float8_e4m3fn"
INT8_ZP = "int8_zp"
INT4_ZP = "int4_zp"
FP8_ZP = "float8_e4m3fn_zp"
class KvCacheQuantConfig(QuantConfigBase):
"""
quantization config for weight 4bits and activation fp8
"""
def __init__(self, kv_cache_quant_type: str, is_channel_wise: bool, has_zero_point: bool) -> None:
"""
__init__
"""
super().__init__()
self.kv_cache_quant_type = kv_cache_quant_type
self.is_channel_wise = is_channel_wise
self.has_zero_point = has_zero_point
try:
self.quant_type = KvCacheQuantzationTypes(kv_cache_quant_type)
except ValueError:
raise ValueError(f"Invalid Kvcache type: {kv_cache_quant_type}")
if "zp" in kv_cache_quant_type:
self.has_zero_point = True
if self.quant_type == KvCacheQuantzationTypes.INT8 or self.quant_type == KvCacheQuantzationTypes.INT8_ZP:
self.max_bound = 127.0
elif self.quant_type == KvCacheQuantzationTypes.FP8 or self.quant_type == KvCacheQuantzationTypes.FP8_ZP:
self.max_bound = 448.0
elif self.quant_type == KvCacheQuantzationTypes.INT4_ZP:
self.max_bound = 7.0
else:
raise ValueError(f"Invalid Kvcache type: {kv_cache_quant_type}")
def name(self) -> str:
"""
get_name
"""
return "kvcache"
@classmethod
def from_config(
cls, kv_cache_quant_type: str, is_channel_wise: bool, has_zero_point: bool
) -> "KvCacheQuantConfig":
"""
from_config
"""
return cls(kv_cache_quant_type, is_channel_wise, has_zero_point)
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
"""
get_quant_method
"""
return KVCacheMethodBase(self)
class KVCacheMethodBase(QuantMethodBase):
"""
KVCacheMethodBase
"""
def __init__(
self,
quant_config: KvCacheQuantConfig,
) -> None:
"""
KVCacheMethodBase __init__
"""
super().__init__()
self.cache_quant_config = quant_config
def load_zp(self, layer: nn.Layer, state_dict):
"""
load_zp
"""
cache_k_zeropoint = get_tensor(state_dict.pop(self.cache_k_zp_name)).cast(paddle.get_default_dtype())
cache_v_zeropoint = get_tensor(state_dict.pop(self.cache_v_zp_name)).cast(paddle.get_default_dtype())
create_and_set_parameter(layer, "cache_k_zp", cache_k_zeropoint)
create_and_set_parameter(layer, "cache_v_zp", cache_v_zeropoint)
def load_scale(self, layer: nn.Layer, state_dict):
"""
load_scale
"""
if self.cache_quant_config.is_channel_wise:
cache_k_scale_tensor = (
get_tensor(state_dict.pop(self.cache_k_scale_name))
.cast(paddle.get_default_dtype())
.reshape_([-1, layer.head_dim])
)
cache_v_scale_tensor = (
get_tensor(state_dict.pop(self.cache_v_scale_name))
.cast(paddle.get_default_dtype())
.reshape_([-1, layer.head_dim])
)
else:
cache_k_scale_tensor = (
get_tensor(state_dict.pop(self.cache_k_scale_name)).cast(paddle.get_default_dtype()).reshape_([-1])
)
cache_v_scale_tensor = (
get_tensor(state_dict.pop(self.cache_v_scale_name)).cast(paddle.get_default_dtype()).reshape_([-1])
)
if self.cache_quant_config.has_zero_point: # cache_int4_zp
cache_k_scale = 1.0 / cache_k_scale_tensor
cache_v_scale = 1.0 / cache_v_scale_tensor
cache_k_out_scale = cache_k_scale_tensor
cache_v_out_scale = cache_v_scale_tensor
else:
cache_k_scale = self.cache_quant_config.max_bound / cache_k_scale_tensor
cache_v_scale = self.cache_quant_config.max_bound / cache_v_scale_tensor
cache_k_out_scale = cache_k_scale_tensor / self.cache_quant_config.max_bound
cache_v_out_scale = cache_v_scale_tensor / self.cache_quant_config.max_bound
create_and_set_parameter(layer, "cache_k_scale", cache_k_scale)
create_and_set_parameter(layer, "cache_v_scale", cache_v_scale)
create_and_set_parameter(layer, "cache_k_out_scale", cache_k_out_scale)
create_and_set_parameter(layer, "cache_v_out_scale", cache_v_out_scale)
def create_weights(self, layer: nn.Layer, state_dict):
"""
create_weights
"""
self.prefix = layer.prefix
self.cache_k_scale_name = layer.prefix + ".cachek_matmul.activation_scale"
self.cache_v_scale_name = layer.prefix + ".cachev_matmul.activation_scale"
self.cache_k_zp_name = layer.prefix + ".cachek_matmul.activation_zero_point"
self.cache_v_zp_name = layer.prefix + ".cachev_matmul.activation_zero_point"
if self.cache_quant_config.quant_type == KvCacheQuantzationTypes.INT8:
layer.cache_quant_type_str = "cache_int8"
layer.quant_max_bound = 127.0
layer.quant_min_bound = -127.0
elif self.cache_quant_config.quant_type == KvCacheQuantzationTypes.FP8:
layer.cache_quant_type_str = "cache_fp8"
layer.quant_max_bound = 448.0
layer.quant_min_bound = -448.0
elif self.cache_quant_config.quant_type == KvCacheQuantzationTypes.INT4_ZP:
layer.cache_quant_type_str = "cache_int4_zp"
layer.quant_max_bound = 7.0
layer.quant_min_bound = -7.0
else:
raise NotImplementedError(f"{self.cache_quant_config.quant_type} is not implemented")
self.load_scale(layer, state_dict)
if self.cache_quant_config.has_zero_point:
self.load_zp(layer, state_dict)
def apply(self, layer):
"""
apply
"""
raise RuntimeError(f"{self.__class__.__name__}.apply should not be called.")