Files
FastDeploy/fastdeploy/input/qwen_vl_processor/process.py
lddfym 2056a428bd [bug fix] Fix the placeholder in qwen prompt and add some unittests (#4065)
* fix the placeholder in qwen prompt

* fix the placeholder in qwen prompt

* add soem unittests for qwen_vl_processor
2025-09-11 20:00:02 +08:00

506 lines
19 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Any, Dict, List, Tuple, Union
import numpy as np
from paddleformers.transformers import AutoTokenizer
from fastdeploy.entrypoints.chat_utils import parse_chat_messages
from fastdeploy.input.utils import IDS_TYPE_FLAG
from fastdeploy.utils import data_processor_logger
from .image_processor import ImageProcessor
from .process_video import read_frames, sample_frames
class DataProcessor:
"""
Processes multimodal inputs (text, images, videos) into model-ready formats.
Handles:
- Tokenization of text with special tokens for visual content
- Image and video preprocessing
- Generation of 3D positional embeddings
- Conversion of chat messages to model inputs
Attributes:
tokenizer: Text tokenizer instance
image_processor: Image/video preprocessor
image_token: Special token for image placeholders
video_token: Special token for video placeholders
vision_start: Token marking start of visual content
"""
def __init__(
self,
model_path: str,
video_min_frames: int = 4,
video_max_frames: int = 768,
tokens_per_second: int = 2,
tokenizer=None,
**kwargs,
) -> None:
"""
Initialize the data processor.
Args:
model_path: Path to pretrained model
video_min_frames: Minimum frames to sample from videos
video_max_frames: Maximum frames to sample from videos
tokens_per_second: Temporal resolution for positional embeddings
**kwargs: Additional configuration
"""
self.min_frames = video_min_frames
self.max_frames = video_max_frames
# Initialize tokenizer with left padding and fast tokenizer
if tokenizer is None:
self.tokenizer = AutoTokenizer.from_pretrained(model_path, padding_side="left", use_fast=True)
self.tokenizer.ignored_index = -100 # Set ignored index for loss calculation
else:
self.tokenizer = tokenizer
self.image_processor = ImageProcessor.from_pretrained(model_path) # Initialize image processor
# Convolution sizes for patch aggregation
self.spatial_conv_size = self.image_processor.merge_size
self.temporal_conv_size = self.image_processor.temporal_patch_size
# Special tokens and IDs
self.image_token = "<|image_pad|>"
self.video_token = "<|video_pad|>"
self.image_token_id = self.tokenizer.convert_tokens_to_ids(self.image_token)
self.video_token_id = self.tokenizer.convert_tokens_to_ids(self.video_token)
self.vision_start = "<|vision_start|>"
self.vision_start_id = self.tokenizer.convert_tokens_to_ids(self.vision_start)
self.tokens_per_second = tokens_per_second
self.role_prefixes = {
"system": "",
"user": "User: ",
"bot": "Assistant: ",
"assistant": "Assistant: ",
}
def _pack_outputs(self, outputs):
"""
Pack and convert all output data into numpy arrays with appropriate types.
Args:
outputs (dict): Dictionary containing model outputs with keys:
- images: List of visual features
- grid_thw: List of spatial dimensions
- image_type_ids: List of content type indicators
- input_ids: List of token IDs
- token_type_ids: List of type identifiers
- position_ids: List of position embeddings
Returns:
dict: Processed outputs with all values converted to numpy arrays
"""
# Process visual outputs - stack if exists or set to None if empty
if not outputs["images"]:
outputs["images"] = None # No images case
outputs["grid_thw"] = None # No spatial dimensions
outputs["image_type_ids"] = None # No type IDs
else:
outputs["images"] = np.vstack(outputs["images"]) # Stack image features vertically
outputs["grid_thw"] = np.vstack(outputs["grid_thw"]) # Stack spatial dimensions
outputs["image_type_ids"] = np.array(outputs["image_type_ids"]) # Convert to numpy array
# Convert all outputs to numpy arrays with appropriate types
outputs["input_ids"] = np.array(outputs["input_ids"], dtype=np.int64) # Token IDs as int64
outputs["token_type_ids"] = np.array(outputs["token_type_ids"], dtype=np.int64) # Type IDs as int64
outputs["position_ids"] = np.concatenate(
outputs["position_ids"], axis=1, dtype=np.int64
) # Concatenate position IDs
return outputs
def text2ids(self, text, images=None, videos=None):
"""
Convert text with image/video placeholders into model inputs.
Args:
text: Input text with <|image@placeholder|> and <|video@placeholder|> markers
images: List of PIL Images corresponding to image placeholders
videos: List of video data corresponding to video placeholders
Returns:
Dict containing:
- input_ids: Token IDs
- token_type_ids: Type identifiers (text/image/video)
- position_ids: 3D positional embeddings
- images: Preprocessed visual features
- grid_thw: Spatial/temporal dimensions
- image_type_ids: Visual content type (0=image, 1=video)
"""
outputs = {
"input_ids": [],
"token_type_ids": [],
"position_ids": [],
"images": [],
"grid_thw": [],
"image_type_ids": [],
"labels": [],
"cur_position": 0,
"pic_cnt": 0,
"video_cnt": 0,
}
# Define placeholders and their lengths
IMAGE_PLACEHOLDER = "<|image_pad|>"
VIDEO_PLACEHOLDER = "<|video_pad|>"
IMAGE_PLACEHOLDER_LEN = len(IMAGE_PLACEHOLDER)
VIDEO_PLACEHOLDER_LEN = len(VIDEO_PLACEHOLDER)
# Initialize tracking variables for text parsing
st, image_idx, video_idx = 0, 0, 0 # Start position, image counter, video counter
while st < len(text):
# Find next image or video placeholder in text
image_pos = text.find(IMAGE_PLACEHOLDER, st)
image_pos = len(text) if image_pos == -1 else image_pos # Set to end if not found
video_pos = text.find(VIDEO_PLACEHOLDER, st)
video_pos = len(text) if video_pos == -1 else video_pos # Set to end if not found
ed = min(image_pos, video_pos) # End position is first placeholder found
self._add_text(text[st:ed], outputs)
if ed == len(text):
break
if ed == image_pos:
outputs["pic_cnt"] += 1
self._add_image(images[image_idx], outputs)
image_idx += 1
st = ed + IMAGE_PLACEHOLDER_LEN
else:
item = videos[video_idx]
if isinstance(item, dict):
frames, meta = self._load_and_process_video(item["video"], item)
else:
frames, meta = self._load_and_process_video(item, {})
outputs["video_cnt"] += 1
self._add_video(frames, meta, outputs)
video_idx += 1
st = ed + VIDEO_PLACEHOLDER_LEN
return self._pack_outputs(outputs)
def request2ids(
self, request: Dict[str, Any], tgts: List[str] = None
) -> Dict[str, Union[np.ndarray, List[np.ndarray], None]]:
"""
Convert chat request with multimodal messages into model inputs.
Args:
request: Dictionary containing:
- messages: List of chat messages with text/image/video content
- request_id: Unique identifier for logging
tgts: Optional target sequences
Returns:
Dict with same structure as text2ids() output
"""
outputs = {
"input_ids": [],
"token_type_ids": [],
"position_ids": [],
"images": [],
"grid_thw": [],
"image_type_ids": [],
"labels": [],
"cur_position": 0,
"pic_cnt": 0,
"video_cnt": 0,
}
# Parse and validate chat messages
messages = parse_chat_messages(request.get("messages"))
image_message_list = [] # Store visual content messages
for msg in messages:
role = msg.get("role")
assert role in self.role_prefixes, f"Unsupported role: {role}"
# Normalize content to list format
content_items = msg.get("content")
if not isinstance(content_items, list):
content_items = [content_items]
# Collect all visual content items
for item in content_items:
if isinstance(item, dict) and item.get("type") in ["image", "video"]:
image_message_list.append(item)
raw_messages = request["messages"]
request["messages"] = messages
prompt_token_ids = self.apply_chat_template(request)
if len(prompt_token_ids) == 0:
raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
request["messages"] = raw_messages
vision_start_index = 0
vision_message_index = 0
for i in range(len(prompt_token_ids)):
if prompt_token_ids[i] == self.vision_start_id:
self._add_text(prompt_token_ids[vision_start_index : i + 1], outputs)
vision_start_index = i + 1
image_message = image_message_list[vision_message_index]
if image_message["type"] == "image":
img = image_message.get("image")
if img is None:
continue
outputs["pic_cnt"] += 1
self._add_image(img, outputs)
elif image_message["type"] == "video":
video_bytes = image_message.get("video")
if video_bytes is None:
continue
frames, meta = self._load_and_process_video(video_bytes, image_message)
outputs["video_cnt"] += 1
self._add_video(frames, meta, outputs)
vision_message_index += 1
self._add_text(prompt_token_ids[vision_start_index:], outputs)
return self._pack_outputs(outputs)
def _add_text(self, tokens, outputs: Dict) -> None:
"""
Add text tokens to model inputs dictionary.
Args:
tokens: Text string or already tokenized IDs
outputs: Dictionary accumulating model inputs
Note:
- Handles both raw text and pre-tokenized inputs
- Updates position IDs for 3D embeddings
"""
if not tokens:
return None
if isinstance(tokens, str):
tokens_str = self.tokenizer.tokenize(tokens)
tokens = self.tokenizer.convert_tokens_to_ids(tokens_str)
num_tokens = len(tokens)
outputs["input_ids"].extend(tokens)
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["text"]] * num_tokens)
position_ids = self._compute_text_positions(outputs["cur_position"], num_tokens)
outputs["position_ids"].append(position_ids)
outputs["cur_position"] = position_ids.max() + 1
def _compute_text_positions(self, start_pos: int, num_tokens: int) -> np.ndarray:
"""
Generate 3D positional embeddings for text tokens.
Args:
start_pos: Starting position index
num_tokens: Number of tokens to generate positions for
Returns:
numpy.ndarray: 3D position IDs shaped (3, num_tokens)
"""
text_array = np.arange(num_tokens).reshape(1, -1)
text_index = np.broadcast_to(text_array, (3, num_tokens))
position = text_index + start_pos
return position
def _add_image(self, img, outputs: Dict) -> None:
"""
Add image data to model inputs dictionary.
Args:
img: PIL Image to process
outputs: Dictionary accumulating model inputs
Note:
- Preprocesses image and calculates spatial dimensions
- Adds image token IDs and type markers
- Generates appropriate position embeddings
"""
ret = self.image_processor.preprocess(images=[img.convert("RGB")])
num_tokens = ret["grid_thw"].prod() // self.image_processor.merge_size**2
grid_thw = ret["grid_thw"].tolist()
outputs["input_ids"].extend([self.image_token_id] * num_tokens)
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["image"]] * num_tokens)
outputs["images"].append(ret["pixel_values"])
outputs["grid_thw"].append(grid_thw)
outputs["image_type_ids"].append(0)
t, h, w = grid_thw
position_ids = self._compute_vision_positions(outputs["cur_position"], t, h, w, 0)
outputs["position_ids"].append(position_ids)
outputs["cur_position"] = position_ids.max() + 1
def _add_video(self, frames, meta: Dict, outputs: Dict) -> None:
"""
Add video data to model inputs dictionary.
Args:
frames: Video frames as numpy array
meta: Video metadata containing fps/duration
outputs: Dictionary accumulating model inputs
Note:
- Handles temporal dimension in position embeddings
- Uses video-specific token IDs and type markers
"""
ret = self.image_processor.preprocess(images=frames)
num_tokens = ret["grid_thw"].prod() // self.image_processor.merge_size**2
grid_thw = ret["grid_thw"].tolist()
outputs["input_ids"].extend([self.video_token_id] * num_tokens)
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["video"]] * num_tokens)
outputs["images"].append(ret["pixel_values"])
outputs["grid_thw"].append(grid_thw)
outputs["image_type_ids"].extend([1] * grid_thw[0])
fps = meta["fps"]
second_per_grid_t = self.temporal_conv_size / fps
t, h, w = grid_thw
position_ids = self._compute_vision_positions(outputs["cur_position"], t, h, w, second_per_grid_t)
outputs["position_ids"].append(position_ids)
outputs["cur_position"] = position_ids.max() + 1
def _compute_vision_positions(
self, start_pos: int, t: int, h: int, w: int, second_per_grid_t: float
) -> np.ndarray:
"""
Generate 3D position IDs for visual inputs.
Args:
start_pos: Base position in sequence
t: Temporal patches (1 for images)
h: Height in patches
w: Width in patches
second_per_grid_t: Time per temporal patch
Returns:
np.ndarray: Position IDs for [t,h,w] dimensions
"""
h //= self.spatial_conv_size
w //= self.spatial_conv_size
tn = np.arange(t).reshape(-1, 1)
tn = np.broadcast_to(tn, (t, h * w))
tn = tn * int(second_per_grid_t) * self.tokens_per_second
t_index = tn.flatten()
hn = np.arange(h).reshape(1, -1, 1)
h_index = np.broadcast_to(hn, (t, h, w)).flatten()
wn = np.arange(w).reshape(1, 1, -1)
w_index = np.broadcast_to(wn, (t, h, w)).flatten()
position = np.stack([t_index, h_index, w_index]) + start_pos
return position
def _load_and_process_video(self, url: str, item: Dict) -> Tuple[np.ndarray, Dict]:
"""
Load and preprocess video into frames.
Args:
url: Video file path or bytes
item: Dictionary containing processing parameters
Returns:
tuple: (frames, metadata) where:
- frames: Processed video frames as numpy array
- metadata: Updated video metadata dictionary
"""
frames, meta = read_frames(url)
# Apply frame sampling if fps or target_frames specified
fps = item.get("fps", None)
num_frames = item.get("target_frames", None)
if fps is not None or num_frames is not None:
# Get frame sampling constraints
min_frames = item.get("min_frames", self.min_frames)
max_frames = item.get("max_frames", self.max_frames)
# Sample frames according to specifications
frames = sample_frames(
video=frames,
frame_factor=self.temporal_conv_size, # Ensure divisible by temporal patch size
min_frames=min_frames,
max_frames=max_frames,
metadata=meta,
fps=fps,
num_frames=num_frames,
)
# Update metadata with new frame count and fps
meta["num_of_frame"] = frames.shape[0]
if fps is not None:
meta["fps"] = fps # Use specified fps
meta["duration"] = frames.shape[0] / fps
else:
meta["fps"] = frames.shape[0] / meta["duration"] # Calculate fps from sampled frames
return frames, meta
def apply_chat_template(self, request):
"""
Apply chat template to convert messages into token sequence.
Args:
request: Dictionary containing chat messages
Returns:
List of token IDs
Raises:
ValueError: If model doesn't support chat templates
"""
if self.tokenizer.chat_template is None:
raise ValueError("This model does not support chat_template.")
raw_prompt = self.tokenizer.apply_chat_template(
request["messages"],
tokenize=False,
add_generation_prompt=request.get("add_generation_prompt", True),
)
prompt_token_str = raw_prompt.replace(self.image_token, "").replace(self.video_token, "")
request["text_after_process"] = raw_prompt
tokens = self.tokenizer.tokenize(prompt_token_str)
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
data_processor_logger.info(
f"req_id:{request.get('request_id', ''), } prompt: {raw_prompt} tokens: {tokens}, token_ids: {token_ids}"
)
return token_ids