mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* fix the placeholder in qwen prompt * fix the placeholder in qwen prompt * add soem unittests for qwen_vl_processor
506 lines
19 KiB
Python
506 lines
19 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from typing import Any, Dict, List, Tuple, Union
|
|
|
|
import numpy as np
|
|
from paddleformers.transformers import AutoTokenizer
|
|
|
|
from fastdeploy.entrypoints.chat_utils import parse_chat_messages
|
|
from fastdeploy.input.utils import IDS_TYPE_FLAG
|
|
from fastdeploy.utils import data_processor_logger
|
|
|
|
from .image_processor import ImageProcessor
|
|
from .process_video import read_frames, sample_frames
|
|
|
|
|
|
class DataProcessor:
|
|
"""
|
|
Processes multimodal inputs (text, images, videos) into model-ready formats.
|
|
|
|
Handles:
|
|
- Tokenization of text with special tokens for visual content
|
|
- Image and video preprocessing
|
|
- Generation of 3D positional embeddings
|
|
- Conversion of chat messages to model inputs
|
|
|
|
Attributes:
|
|
tokenizer: Text tokenizer instance
|
|
image_processor: Image/video preprocessor
|
|
image_token: Special token for image placeholders
|
|
video_token: Special token for video placeholders
|
|
vision_start: Token marking start of visual content
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_path: str,
|
|
video_min_frames: int = 4,
|
|
video_max_frames: int = 768,
|
|
tokens_per_second: int = 2,
|
|
tokenizer=None,
|
|
**kwargs,
|
|
) -> None:
|
|
"""
|
|
Initialize the data processor.
|
|
|
|
Args:
|
|
model_path: Path to pretrained model
|
|
video_min_frames: Minimum frames to sample from videos
|
|
video_max_frames: Maximum frames to sample from videos
|
|
tokens_per_second: Temporal resolution for positional embeddings
|
|
**kwargs: Additional configuration
|
|
"""
|
|
self.min_frames = video_min_frames
|
|
self.max_frames = video_max_frames
|
|
|
|
# Initialize tokenizer with left padding and fast tokenizer
|
|
if tokenizer is None:
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path, padding_side="left", use_fast=True)
|
|
self.tokenizer.ignored_index = -100 # Set ignored index for loss calculation
|
|
else:
|
|
self.tokenizer = tokenizer
|
|
self.image_processor = ImageProcessor.from_pretrained(model_path) # Initialize image processor
|
|
|
|
# Convolution sizes for patch aggregation
|
|
self.spatial_conv_size = self.image_processor.merge_size
|
|
self.temporal_conv_size = self.image_processor.temporal_patch_size
|
|
|
|
# Special tokens and IDs
|
|
self.image_token = "<|image_pad|>"
|
|
self.video_token = "<|video_pad|>"
|
|
|
|
self.image_token_id = self.tokenizer.convert_tokens_to_ids(self.image_token)
|
|
self.video_token_id = self.tokenizer.convert_tokens_to_ids(self.video_token)
|
|
|
|
self.vision_start = "<|vision_start|>"
|
|
self.vision_start_id = self.tokenizer.convert_tokens_to_ids(self.vision_start)
|
|
|
|
self.tokens_per_second = tokens_per_second
|
|
|
|
self.role_prefixes = {
|
|
"system": "",
|
|
"user": "User: ",
|
|
"bot": "Assistant: ",
|
|
"assistant": "Assistant: ",
|
|
}
|
|
|
|
def _pack_outputs(self, outputs):
|
|
"""
|
|
Pack and convert all output data into numpy arrays with appropriate types.
|
|
|
|
Args:
|
|
outputs (dict): Dictionary containing model outputs with keys:
|
|
- images: List of visual features
|
|
- grid_thw: List of spatial dimensions
|
|
- image_type_ids: List of content type indicators
|
|
- input_ids: List of token IDs
|
|
- token_type_ids: List of type identifiers
|
|
- position_ids: List of position embeddings
|
|
|
|
Returns:
|
|
dict: Processed outputs with all values converted to numpy arrays
|
|
"""
|
|
# Process visual outputs - stack if exists or set to None if empty
|
|
if not outputs["images"]:
|
|
outputs["images"] = None # No images case
|
|
outputs["grid_thw"] = None # No spatial dimensions
|
|
outputs["image_type_ids"] = None # No type IDs
|
|
else:
|
|
outputs["images"] = np.vstack(outputs["images"]) # Stack image features vertically
|
|
outputs["grid_thw"] = np.vstack(outputs["grid_thw"]) # Stack spatial dimensions
|
|
outputs["image_type_ids"] = np.array(outputs["image_type_ids"]) # Convert to numpy array
|
|
|
|
# Convert all outputs to numpy arrays with appropriate types
|
|
outputs["input_ids"] = np.array(outputs["input_ids"], dtype=np.int64) # Token IDs as int64
|
|
outputs["token_type_ids"] = np.array(outputs["token_type_ids"], dtype=np.int64) # Type IDs as int64
|
|
outputs["position_ids"] = np.concatenate(
|
|
outputs["position_ids"], axis=1, dtype=np.int64
|
|
) # Concatenate position IDs
|
|
return outputs
|
|
|
|
def text2ids(self, text, images=None, videos=None):
|
|
"""
|
|
Convert text with image/video placeholders into model inputs.
|
|
|
|
Args:
|
|
text: Input text with <|image@placeholder|> and <|video@placeholder|> markers
|
|
images: List of PIL Images corresponding to image placeholders
|
|
videos: List of video data corresponding to video placeholders
|
|
|
|
Returns:
|
|
Dict containing:
|
|
- input_ids: Token IDs
|
|
- token_type_ids: Type identifiers (text/image/video)
|
|
- position_ids: 3D positional embeddings
|
|
- images: Preprocessed visual features
|
|
- grid_thw: Spatial/temporal dimensions
|
|
- image_type_ids: Visual content type (0=image, 1=video)
|
|
"""
|
|
|
|
outputs = {
|
|
"input_ids": [],
|
|
"token_type_ids": [],
|
|
"position_ids": [],
|
|
"images": [],
|
|
"grid_thw": [],
|
|
"image_type_ids": [],
|
|
"labels": [],
|
|
"cur_position": 0,
|
|
"pic_cnt": 0,
|
|
"video_cnt": 0,
|
|
}
|
|
|
|
# Define placeholders and their lengths
|
|
IMAGE_PLACEHOLDER = "<|image_pad|>"
|
|
VIDEO_PLACEHOLDER = "<|video_pad|>"
|
|
IMAGE_PLACEHOLDER_LEN = len(IMAGE_PLACEHOLDER)
|
|
VIDEO_PLACEHOLDER_LEN = len(VIDEO_PLACEHOLDER)
|
|
|
|
# Initialize tracking variables for text parsing
|
|
st, image_idx, video_idx = 0, 0, 0 # Start position, image counter, video counter
|
|
while st < len(text):
|
|
# Find next image or video placeholder in text
|
|
image_pos = text.find(IMAGE_PLACEHOLDER, st)
|
|
image_pos = len(text) if image_pos == -1 else image_pos # Set to end if not found
|
|
video_pos = text.find(VIDEO_PLACEHOLDER, st)
|
|
video_pos = len(text) if video_pos == -1 else video_pos # Set to end if not found
|
|
ed = min(image_pos, video_pos) # End position is first placeholder found
|
|
|
|
self._add_text(text[st:ed], outputs)
|
|
if ed == len(text):
|
|
break
|
|
|
|
if ed == image_pos:
|
|
outputs["pic_cnt"] += 1
|
|
self._add_image(images[image_idx], outputs)
|
|
image_idx += 1
|
|
st = ed + IMAGE_PLACEHOLDER_LEN
|
|
else:
|
|
item = videos[video_idx]
|
|
if isinstance(item, dict):
|
|
frames, meta = self._load_and_process_video(item["video"], item)
|
|
else:
|
|
frames, meta = self._load_and_process_video(item, {})
|
|
|
|
outputs["video_cnt"] += 1
|
|
self._add_video(frames, meta, outputs)
|
|
video_idx += 1
|
|
st = ed + VIDEO_PLACEHOLDER_LEN
|
|
|
|
return self._pack_outputs(outputs)
|
|
|
|
def request2ids(
|
|
self, request: Dict[str, Any], tgts: List[str] = None
|
|
) -> Dict[str, Union[np.ndarray, List[np.ndarray], None]]:
|
|
"""
|
|
Convert chat request with multimodal messages into model inputs.
|
|
|
|
Args:
|
|
request: Dictionary containing:
|
|
- messages: List of chat messages with text/image/video content
|
|
- request_id: Unique identifier for logging
|
|
tgts: Optional target sequences
|
|
|
|
Returns:
|
|
Dict with same structure as text2ids() output
|
|
"""
|
|
|
|
outputs = {
|
|
"input_ids": [],
|
|
"token_type_ids": [],
|
|
"position_ids": [],
|
|
"images": [],
|
|
"grid_thw": [],
|
|
"image_type_ids": [],
|
|
"labels": [],
|
|
"cur_position": 0,
|
|
"pic_cnt": 0,
|
|
"video_cnt": 0,
|
|
}
|
|
|
|
# Parse and validate chat messages
|
|
messages = parse_chat_messages(request.get("messages"))
|
|
image_message_list = [] # Store visual content messages
|
|
|
|
for msg in messages:
|
|
role = msg.get("role")
|
|
assert role in self.role_prefixes, f"Unsupported role: {role}"
|
|
|
|
# Normalize content to list format
|
|
content_items = msg.get("content")
|
|
if not isinstance(content_items, list):
|
|
content_items = [content_items]
|
|
|
|
# Collect all visual content items
|
|
for item in content_items:
|
|
if isinstance(item, dict) and item.get("type") in ["image", "video"]:
|
|
image_message_list.append(item)
|
|
|
|
raw_messages = request["messages"]
|
|
request["messages"] = messages
|
|
|
|
prompt_token_ids = self.apply_chat_template(request)
|
|
if len(prompt_token_ids) == 0:
|
|
raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
|
|
request["messages"] = raw_messages
|
|
|
|
vision_start_index = 0
|
|
vision_message_index = 0
|
|
for i in range(len(prompt_token_ids)):
|
|
if prompt_token_ids[i] == self.vision_start_id:
|
|
self._add_text(prompt_token_ids[vision_start_index : i + 1], outputs)
|
|
|
|
vision_start_index = i + 1
|
|
image_message = image_message_list[vision_message_index]
|
|
|
|
if image_message["type"] == "image":
|
|
img = image_message.get("image")
|
|
if img is None:
|
|
continue
|
|
outputs["pic_cnt"] += 1
|
|
self._add_image(img, outputs)
|
|
|
|
elif image_message["type"] == "video":
|
|
video_bytes = image_message.get("video")
|
|
if video_bytes is None:
|
|
continue
|
|
frames, meta = self._load_and_process_video(video_bytes, image_message)
|
|
|
|
outputs["video_cnt"] += 1
|
|
self._add_video(frames, meta, outputs)
|
|
|
|
vision_message_index += 1
|
|
|
|
self._add_text(prompt_token_ids[vision_start_index:], outputs)
|
|
return self._pack_outputs(outputs)
|
|
|
|
def _add_text(self, tokens, outputs: Dict) -> None:
|
|
"""
|
|
Add text tokens to model inputs dictionary.
|
|
|
|
Args:
|
|
tokens: Text string or already tokenized IDs
|
|
outputs: Dictionary accumulating model inputs
|
|
|
|
Note:
|
|
- Handles both raw text and pre-tokenized inputs
|
|
- Updates position IDs for 3D embeddings
|
|
"""
|
|
if not tokens:
|
|
return None
|
|
|
|
if isinstance(tokens, str):
|
|
tokens_str = self.tokenizer.tokenize(tokens)
|
|
tokens = self.tokenizer.convert_tokens_to_ids(tokens_str)
|
|
|
|
num_tokens = len(tokens)
|
|
outputs["input_ids"].extend(tokens)
|
|
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["text"]] * num_tokens)
|
|
|
|
position_ids = self._compute_text_positions(outputs["cur_position"], num_tokens)
|
|
outputs["position_ids"].append(position_ids)
|
|
outputs["cur_position"] = position_ids.max() + 1
|
|
|
|
def _compute_text_positions(self, start_pos: int, num_tokens: int) -> np.ndarray:
|
|
"""
|
|
Generate 3D positional embeddings for text tokens.
|
|
|
|
Args:
|
|
start_pos: Starting position index
|
|
num_tokens: Number of tokens to generate positions for
|
|
|
|
Returns:
|
|
numpy.ndarray: 3D position IDs shaped (3, num_tokens)
|
|
"""
|
|
text_array = np.arange(num_tokens).reshape(1, -1)
|
|
text_index = np.broadcast_to(text_array, (3, num_tokens))
|
|
position = text_index + start_pos
|
|
return position
|
|
|
|
def _add_image(self, img, outputs: Dict) -> None:
|
|
"""
|
|
Add image data to model inputs dictionary.
|
|
|
|
Args:
|
|
img: PIL Image to process
|
|
outputs: Dictionary accumulating model inputs
|
|
|
|
Note:
|
|
- Preprocesses image and calculates spatial dimensions
|
|
- Adds image token IDs and type markers
|
|
- Generates appropriate position embeddings
|
|
"""
|
|
ret = self.image_processor.preprocess(images=[img.convert("RGB")])
|
|
num_tokens = ret["grid_thw"].prod() // self.image_processor.merge_size**2
|
|
grid_thw = ret["grid_thw"].tolist()
|
|
|
|
outputs["input_ids"].extend([self.image_token_id] * num_tokens)
|
|
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["image"]] * num_tokens)
|
|
|
|
outputs["images"].append(ret["pixel_values"])
|
|
outputs["grid_thw"].append(grid_thw)
|
|
outputs["image_type_ids"].append(0)
|
|
|
|
t, h, w = grid_thw
|
|
position_ids = self._compute_vision_positions(outputs["cur_position"], t, h, w, 0)
|
|
|
|
outputs["position_ids"].append(position_ids)
|
|
outputs["cur_position"] = position_ids.max() + 1
|
|
|
|
def _add_video(self, frames, meta: Dict, outputs: Dict) -> None:
|
|
"""
|
|
Add video data to model inputs dictionary.
|
|
|
|
Args:
|
|
frames: Video frames as numpy array
|
|
meta: Video metadata containing fps/duration
|
|
outputs: Dictionary accumulating model inputs
|
|
|
|
Note:
|
|
- Handles temporal dimension in position embeddings
|
|
- Uses video-specific token IDs and type markers
|
|
"""
|
|
ret = self.image_processor.preprocess(images=frames)
|
|
|
|
num_tokens = ret["grid_thw"].prod() // self.image_processor.merge_size**2
|
|
grid_thw = ret["grid_thw"].tolist()
|
|
|
|
outputs["input_ids"].extend([self.video_token_id] * num_tokens)
|
|
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["video"]] * num_tokens)
|
|
|
|
outputs["images"].append(ret["pixel_values"])
|
|
outputs["grid_thw"].append(grid_thw)
|
|
outputs["image_type_ids"].extend([1] * grid_thw[0])
|
|
|
|
fps = meta["fps"]
|
|
second_per_grid_t = self.temporal_conv_size / fps
|
|
t, h, w = grid_thw
|
|
position_ids = self._compute_vision_positions(outputs["cur_position"], t, h, w, second_per_grid_t)
|
|
|
|
outputs["position_ids"].append(position_ids)
|
|
outputs["cur_position"] = position_ids.max() + 1
|
|
|
|
def _compute_vision_positions(
|
|
self, start_pos: int, t: int, h: int, w: int, second_per_grid_t: float
|
|
) -> np.ndarray:
|
|
"""
|
|
Generate 3D position IDs for visual inputs.
|
|
|
|
Args:
|
|
start_pos: Base position in sequence
|
|
t: Temporal patches (1 for images)
|
|
h: Height in patches
|
|
w: Width in patches
|
|
second_per_grid_t: Time per temporal patch
|
|
|
|
Returns:
|
|
np.ndarray: Position IDs for [t,h,w] dimensions
|
|
"""
|
|
h //= self.spatial_conv_size
|
|
w //= self.spatial_conv_size
|
|
|
|
tn = np.arange(t).reshape(-1, 1)
|
|
tn = np.broadcast_to(tn, (t, h * w))
|
|
tn = tn * int(second_per_grid_t) * self.tokens_per_second
|
|
t_index = tn.flatten()
|
|
|
|
hn = np.arange(h).reshape(1, -1, 1)
|
|
h_index = np.broadcast_to(hn, (t, h, w)).flatten()
|
|
|
|
wn = np.arange(w).reshape(1, 1, -1)
|
|
w_index = np.broadcast_to(wn, (t, h, w)).flatten()
|
|
|
|
position = np.stack([t_index, h_index, w_index]) + start_pos
|
|
return position
|
|
|
|
def _load_and_process_video(self, url: str, item: Dict) -> Tuple[np.ndarray, Dict]:
|
|
"""
|
|
Load and preprocess video into frames.
|
|
|
|
Args:
|
|
url: Video file path or bytes
|
|
item: Dictionary containing processing parameters
|
|
|
|
Returns:
|
|
tuple: (frames, metadata) where:
|
|
- frames: Processed video frames as numpy array
|
|
- metadata: Updated video metadata dictionary
|
|
"""
|
|
frames, meta = read_frames(url)
|
|
|
|
# Apply frame sampling if fps or target_frames specified
|
|
fps = item.get("fps", None)
|
|
num_frames = item.get("target_frames", None)
|
|
|
|
if fps is not None or num_frames is not None:
|
|
# Get frame sampling constraints
|
|
min_frames = item.get("min_frames", self.min_frames)
|
|
max_frames = item.get("max_frames", self.max_frames)
|
|
|
|
# Sample frames according to specifications
|
|
frames = sample_frames(
|
|
video=frames,
|
|
frame_factor=self.temporal_conv_size, # Ensure divisible by temporal patch size
|
|
min_frames=min_frames,
|
|
max_frames=max_frames,
|
|
metadata=meta,
|
|
fps=fps,
|
|
num_frames=num_frames,
|
|
)
|
|
|
|
# Update metadata with new frame count and fps
|
|
meta["num_of_frame"] = frames.shape[0]
|
|
if fps is not None:
|
|
meta["fps"] = fps # Use specified fps
|
|
meta["duration"] = frames.shape[0] / fps
|
|
else:
|
|
meta["fps"] = frames.shape[0] / meta["duration"] # Calculate fps from sampled frames
|
|
|
|
return frames, meta
|
|
|
|
def apply_chat_template(self, request):
|
|
"""
|
|
Apply chat template to convert messages into token sequence.
|
|
|
|
Args:
|
|
request: Dictionary containing chat messages
|
|
|
|
Returns:
|
|
List of token IDs
|
|
|
|
Raises:
|
|
ValueError: If model doesn't support chat templates
|
|
"""
|
|
if self.tokenizer.chat_template is None:
|
|
raise ValueError("This model does not support chat_template.")
|
|
|
|
raw_prompt = self.tokenizer.apply_chat_template(
|
|
request["messages"],
|
|
tokenize=False,
|
|
add_generation_prompt=request.get("add_generation_prompt", True),
|
|
)
|
|
prompt_token_str = raw_prompt.replace(self.image_token, "").replace(self.video_token, "")
|
|
request["text_after_process"] = raw_prompt
|
|
|
|
tokens = self.tokenizer.tokenize(prompt_token_str)
|
|
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
|
|
data_processor_logger.info(
|
|
f"req_id:{request.get('request_id', ''), } prompt: {raw_prompt} tokens: {tokens}, token_ids: {token_ids}"
|
|
)
|
|
return token_ids
|