mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			101 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			101 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <pybind11/numpy.h>
 | |
| #include <pybind11/pybind11.h>
 | |
| #include <pybind11/stl.h>
 | |
| 
 | |
| #include <type_traits>
 | |
| 
 | |
| #include "fastdeploy/fastdeploy_runtime.h"
 | |
| 
 | |
| #ifdef ENABLE_VISION
 | |
| #include "fastdeploy/vision.h"
 | |
| #endif
 | |
| 
 | |
| #ifdef ENABLE_TEXT
 | |
| #include "fastdeploy/text.h"
 | |
| #endif
 | |
| 
 | |
| namespace fastdeploy {
 | |
| 
 | |
| void BindBackend(pybind11::module&);
 | |
| void BindVision(pybind11::module&);
 | |
| void BindText(pybind11::module& m);
 | |
| 
 | |
| pybind11::dtype FDDataTypeToNumpyDataType(const FDDataType& fd_dtype);
 | |
| 
 | |
| FDDataType NumpyDataTypeToFDDataType(const pybind11::dtype& np_dtype);
 | |
| 
 | |
| void PyArrayToTensor(pybind11::array& pyarray, FDTensor* tensor,
 | |
|                      bool share_buffer = false);
 | |
| void PyArrayToTensorList(std::vector<pybind11::array>& pyarray,
 | |
|                          std::vector<FDTensor>* tensor,
 | |
|                          bool share_buffer = false);
 | |
| pybind11::array TensorToPyArray(const FDTensor& tensor);
 | |
| 
 | |
| #ifdef ENABLE_VISION
 | |
| cv::Mat PyArrayToCvMat(pybind11::array& pyarray);
 | |
| #endif
 | |
| 
 | |
| template <typename T>
 | |
| FDDataType CTypeToFDDataType() {
 | |
|   if (std::is_same<T, int32_t>::value) {
 | |
|     return FDDataType::INT32;
 | |
|   } else if (std::is_same<T, int64_t>::value) {
 | |
|     return FDDataType::INT64;
 | |
|   } else if (std::is_same<T, float>::value) {
 | |
|     return FDDataType::FP32;
 | |
|   } else if (std::is_same<T, double>::value) {
 | |
|     return FDDataType::FP64;
 | |
|   }
 | |
|   FDASSERT(false,
 | |
|            "CTypeToFDDataType only support int32/int64/float32/float64 now.");
 | |
|   return FDDataType::FP32;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| std::vector<pybind11::array> PyBackendInfer(
 | |
|     T& self, const std::vector<std::string>& names,
 | |
|     std::vector<pybind11::array>& data) {
 | |
|   std::vector<FDTensor> inputs(data.size());
 | |
|   for (size_t i = 0; i < data.size(); ++i) {
 | |
|     // TODO(jiangjiajun) here is considered to use user memory directly
 | |
|     auto dtype = NumpyDataTypeToFDDataType(data[i].dtype());
 | |
|     std::vector<int64_t> data_shape;
 | |
|     data_shape.insert(data_shape.begin(), data[i].shape(),
 | |
|                       data[i].shape() + data[i].ndim());
 | |
|     inputs[i].Resize(data_shape, dtype);
 | |
|     memcpy(inputs[i].MutableData(), data[i].mutable_data(), data[i].nbytes());
 | |
|     inputs[i].name = names[i];
 | |
|   }
 | |
| 
 | |
|   std::vector<FDTensor> outputs(self.NumOutputs());
 | |
|   self.Infer(inputs, &outputs);
 | |
| 
 | |
|   std::vector<pybind11::array> results;
 | |
|   results.reserve(outputs.size());
 | |
|   for (size_t i = 0; i < outputs.size(); ++i) {
 | |
|     auto numpy_dtype = FDDataTypeToNumpyDataType(outputs[i].dtype);
 | |
|     results.emplace_back(pybind11::array(numpy_dtype, outputs[i].shape));
 | |
|     memcpy(results[i].mutable_data(), outputs[i].Data(),
 | |
|            outputs[i].Numel() * FDDataTypeSize(outputs[i].dtype));
 | |
|   }
 | |
|   return results;
 | |
| }
 | |
| 
 | |
| }  // namespace fastdeploy
 | 
