Files
FastDeploy/fastdeploy/function/tile.cc
Jack Zhou d74e1209ae [Diffusion] Add StableDiffusionInpaint pipeline (#760)
* Update Inpaint pipeline

* Update concat

* Add GaussianRandomKernel

* Update GaussianRandom

* Add vae endoder

* Add unet infer

* Add vae decoder predict

* add PrepareMaskAndMaskedImage

* Add imwrite

* Add time counter

* Fix pipeline

* use FDTensor move

* Fix scaled_linear dpm solver

* Add RGB2BGR
2022-12-02 19:30:32 +08:00

111 lines
3.4 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/function/tile.h"
#include "fastdeploy/function/eigen.h"
namespace fastdeploy {
namespace function {
template <typename T, int Rank>
void TileFunctor(const FDTensor& x,
const std::vector<int64_t>& origin_repeat_times,
FDTensor* out) {
auto x_shape = x.Shape();
auto repeat_times = origin_repeat_times;
for (size_t i = 0; i < repeat_times.size(); ++i) {
FDASSERT(repeat_times[i] > 0,
"All elements of the input 'repeat_times' "
"for tile op must be positive integers, but "
"the value received is %d.",
repeat_times[i]);
}
if (repeat_times.size() < x_shape.size()) {
int diff = x_shape.size() - repeat_times.size();
repeat_times.insert(repeat_times.begin(), diff, 1);
} else {
int diff = repeat_times.size() - x_shape.size();
x_shape.insert(x_shape.begin(), diff, 1);
}
FDASSERT(repeat_times.size() == x_shape.size(),
"The rank (%d) of the input 'x' and the rank (%d) of the input "
"'repeat_times' for tile op must match after promotion.",
x_shape.size(), repeat_times.size());
if (Rank == 0) {
// Deep copy
*out = x;
return;
}
FDTensor out_tmp;
Eigen::DSizes<Eigen::DenseIndex, Rank> bcast_dims;
for (size_t i = 0; i < repeat_times.size(); ++i) {
bcast_dims[i] = repeat_times[i];
}
std::vector<int64_t> out_shape(x_shape);
for (size_t i = 0; i < repeat_times.size(); ++i) {
out_shape[i] *= repeat_times[i];
}
out_tmp.Allocate(out_shape, x.Dtype());
auto eigen_x = EigenTensor<T, Rank>::From(x, x_shape);
auto eigen_out = EigenTensor<T, Rank>::From(out_tmp, out_shape);
const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
eigen_out.device(dev) = eigen_x.broadcast(bcast_dims);
*out = std::move(out_tmp);
}
template <typename T>
void TileKernel(const FDTensor& x, const std::vector<int64_t>& repeat_times,
FDTensor* out) {
auto rank = x.Shape().size();
auto repeat_times_size = repeat_times.size();
rank = (std::max)(rank, repeat_times_size);
switch (rank) {
case 0:
*out = x;
break;
case 1:
TileFunctor<T, 1>(x, repeat_times, out);
break;
case 2:
TileFunctor<T, 2>(x, repeat_times, out);
break;
case 3:
TileFunctor<T, 3>(x, repeat_times, out);
break;
case 4:
TileFunctor<T, 4>(x, repeat_times, out);
break;
case 5:
TileFunctor<T, 5>(x, repeat_times, out);
break;
case 6:
TileFunctor<T, 6>(x, repeat_times, out);
break;
}
}
void Tile(const FDTensor& x, const std::vector<int64_t>& repeat_times,
FDTensor* out) {
FD_VISIT_ALL_TYPES(x.dtype, "TileKernel",
([&] { TileKernel<data_t>(x, repeat_times, out); }));
}
} // namespace function
} // namespace fastdeploy