mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* Add BetaForAlphaBar, ConvertModelOutput, SetTimesteps, and constructor for DPMSolverMultistepScheduler * tmp * Add DPMSolverFirstOrderUpdate * Add ScaleModelInput * Add MultiStepDPMSolverSecondOrderUpdate * add MultiStepDPMSolverThirdOrderUpdate * Add Step * Add FASTDEPLOY_DECL * Add AddNoise * Fix operator * update * Fix DPMSolverMultistepScheduler * Upgrade Slice * Fix DPMSolverFirstOrderUpdate * remove FASTDEPLOY_DECL * Add config for dpm solver
183 lines
6.1 KiB
C++
183 lines
6.1 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/function/slice.h"
|
|
#include "fastdeploy/function/eigen.h"
|
|
|
|
#include <algorithm>
|
|
|
|
namespace fastdeploy {
|
|
namespace function {
|
|
|
|
std::vector<int64_t> GetSliceDims(const std::vector<int64_t>& in_dims,
|
|
const std::vector<int64_t>& axes,
|
|
const std::vector<int64_t>& starts,
|
|
const std::vector<int64_t>& ends,
|
|
std::vector<int64_t>* steps = nullptr) {
|
|
std::vector<int64_t> slice_dims(in_dims);
|
|
|
|
for (size_t i = 0; i < axes.size(); ++i) {
|
|
int64_t axis = axes[i];
|
|
if (in_dims[axis] == -1) {
|
|
continue;
|
|
}
|
|
|
|
int64_t start = starts[i];
|
|
int64_t end = ends[i];
|
|
int64_t step = steps == nullptr ? 1 : (*steps)[i];
|
|
|
|
if (step > 0) {
|
|
slice_dims[axis] = (end - start + step - 1) / step;
|
|
} else {
|
|
slice_dims[axis] = (end - start + step + 1) / step;
|
|
}
|
|
}
|
|
return slice_dims;
|
|
}
|
|
|
|
void CheckAndUpdateSliceAttrs(const std::vector<int64_t>& in_dims,
|
|
const std::vector<int64_t>& axes,
|
|
std::vector<int64_t>* starts,
|
|
std::vector<int64_t>* ends,
|
|
std::vector<int64_t>* steps = nullptr) {
|
|
for (size_t i = 0; i < axes.size(); ++i) {
|
|
int64_t axis = axes[i];
|
|
FDASSERT(axis < in_dims.size(),
|
|
"The axis value should be less than the rank of input, "
|
|
"but received axes[%d] = %d, rank of input is %d.",
|
|
i, axis, in_dims.size());
|
|
int64_t dim_value = in_dims[axis];
|
|
|
|
if (dim_value > 0) {
|
|
int64_t step = steps == nullptr ? 1 : (*steps)[i];
|
|
FDASSERT(step != 0, "Step should not be 0, but received step = %d.",
|
|
step);
|
|
int64_t start =
|
|
(*starts)[i] < 0 ? ((*starts)[i] + dim_value) : (*starts)[i];
|
|
start = (std::max)(start, static_cast<int64_t>(0));
|
|
|
|
int64_t end =
|
|
0 < step && (*ends)[i] < 0 ? ((*ends)[i] + dim_value) : (*ends)[i];
|
|
end = (std::min)(end, dim_value);
|
|
|
|
if (step > 0) {
|
|
start = (std::min)(start, dim_value);
|
|
end = (std::max)(end, static_cast<int64_t>(0));
|
|
FDASSERT(end > start,
|
|
"When step > 0, end should be greater than start, but "
|
|
"received end = %d, start = %d.",
|
|
end, start)
|
|
} else {
|
|
start = (std::min)(start, dim_value - 1);
|
|
if (end < -1) {
|
|
end += dim_value;
|
|
}
|
|
end = (std::max)(end, static_cast<int64_t>(-1));
|
|
FDASSERT(start >= end,
|
|
"When step < 0, start should be greater than end, but "
|
|
"received start = %d, end = %d.",
|
|
start, end);
|
|
}
|
|
|
|
(*starts)[i] = start;
|
|
(*ends)[i] = end;
|
|
} else if (dim_value == 0) {
|
|
(*starts)[i] = 0;
|
|
(*ends)[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, size_t D>
|
|
void SliceKernel(const FDTensor& x, const std::vector<int64_t>& axes,
|
|
const std::vector<int64_t>& starts,
|
|
const std::vector<int64_t>& ends, FDTensor* out) {
|
|
FDASSERT(starts.size() == axes.size(),
|
|
"The size of starts must be equal to the size of axes.");
|
|
FDASSERT(ends.size() == axes.size(),
|
|
"The size of ends must be equal to the size of axes.");
|
|
auto starts_idx = starts;
|
|
auto end_idx = ends;
|
|
auto in_dims = x.Shape();
|
|
CheckAndUpdateSliceAttrs(in_dims, axes, &starts_idx, &end_idx);
|
|
auto slice_dims = GetSliceDims(in_dims, axes, starts, ends);
|
|
|
|
auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
|
|
auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
|
|
for (size_t i = 0; i < D; ++i) {
|
|
offsets[i] = 0;
|
|
extents[i] = slice_dims[i];
|
|
}
|
|
for (size_t i = 0; i < axes.size(); ++i) {
|
|
offsets[axes[i]] = starts[i];
|
|
}
|
|
|
|
out->Allocate(slice_dims, x.Dtype());
|
|
auto in_t = EigenTensor<T, D>::From(x, in_dims);
|
|
auto out_t = EigenTensor<T, D>::From(*out, slice_dims);
|
|
const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
|
|
out_t.device(dev) = in_t.slice(offsets, extents);
|
|
}
|
|
|
|
void Slice(const FDTensor& x, const std::vector<int64_t>& axes,
|
|
const std::vector<int64_t>& starts, const std::vector<int64_t>& ends,
|
|
FDTensor* out) {
|
|
FD_VISIT_ALL_TYPES(
|
|
x.dtype, "SliceKernel", ([&] {
|
|
int rank = x.Shape().size();
|
|
switch (rank) {
|
|
case 1:
|
|
SliceKernel<data_t, 1>(x, axes, starts, ends, out);
|
|
break;
|
|
case 2:
|
|
SliceKernel<data_t, 2>(x, axes, starts, ends, out);
|
|
break;
|
|
case 3:
|
|
SliceKernel<data_t, 3>(x, axes, starts, ends, out);
|
|
break;
|
|
case 4:
|
|
SliceKernel<data_t, 4>(x, axes, starts, ends, out);
|
|
break;
|
|
case 5:
|
|
SliceKernel<data_t, 5>(x, axes, starts, ends, out);
|
|
break;
|
|
case 6:
|
|
SliceKernel<data_t, 6>(x, axes, starts, ends, out);
|
|
break;
|
|
default:
|
|
FDASSERT(false,
|
|
"The rank of input should be less than 7, but received %d.",
|
|
rank);
|
|
}
|
|
}));
|
|
}
|
|
|
|
void Slice(const FDTensor& x, const std::vector<int64_t>& axes,
|
|
const std::vector<int64_t>& index, FDTensor* out) {
|
|
std::vector<int64_t> ends = index;
|
|
for (int i = 0; i < ends.size(); ++i) {
|
|
ends[i] += 1;
|
|
}
|
|
Slice(x, axes, index, ends, out);
|
|
for (int i = 0; i < axes.size(); ++i) {
|
|
if (out->Shape().size() <= 1) {
|
|
break;
|
|
}
|
|
out->Squeeze(axes[i]);
|
|
}
|
|
}
|
|
|
|
} // namespace function
|
|
} // namespace fastdeploy
|