Files
FastDeploy/fastdeploy/function/eigen.h
Jason f2fed7959b [Other] Add namespace for functions (#538)
Add namespace for functions
2022-11-09 13:57:53 +08:00

141 lines
4.8 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <memory>
#include <vector>
#include "fastdeploy/core/fd_tensor.h"
#include "fastdeploy/utils/axis_utils.h"
#include "unsupported/Eigen/CXX11/Tensor"
namespace fastdeploy {
namespace function {
// EigenDim converts shape into Eigen::DSizes.
template <int D>
struct EigenDim {
using Type = Eigen::DSizes<Eigen::DenseIndex, D>;
static Type From(const std::vector<int64_t>& dims) {
Type ret;
for (int64_t d = 0; d < dims.size(); d++) {
ret[d] = dims[d];
}
return ret;
}
};
// Interpret FDTensor as EigenTensor and EigenConstTensor.
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
struct EigenTensor {
using Type = Eigen::TensorMap<Eigen::Tensor<T, D, MajorType, IndexType>>;
using ConstType =
Eigen::TensorMap<Eigen::Tensor<const T, D, MajorType, IndexType>>;
static Type From(FDTensor& tensor,
const std::vector<int64_t>& dims) { // NOLINT
return Type(reinterpret_cast<T*>(tensor.Data()), EigenDim<D>::From(dims));
}
static Type From(FDTensor& tensor) { // NOLINT
return From(tensor, tensor.shape);
} // NOLINT
static ConstType From(const FDTensor& tensor,
const std::vector<int64_t>& dims) {
return ConstType(reinterpret_cast<const T*>(tensor.Data()),
EigenDim<D>::From(dims));
}
static ConstType From(const FDTensor& tensor) {
return From(tensor, tensor.shape);
}
};
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
struct EigenScalar {
// Scalar tensor (implemented as a rank-0 tensor) of scalar type T.
using Type = Eigen::TensorMap<
Eigen::TensorFixedSize<T, Eigen::Sizes<>, MajorType, IndexType>>;
using ConstType = Eigen::TensorMap<
Eigen::TensorFixedSize<const T, Eigen::Sizes<>, MajorType, IndexType>>;
static Type From(FDTensor& tensor) {
return Type(reinterpret_cast<T*>(tensor.Data()));
} // NOLINT
static ConstType From(const FDTensor& tensor) {
return ConstType(reinterpret_cast<const T*>(tensor.Data()));
}
};
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
struct EigenVector : public EigenTensor<T, 1, MajorType, IndexType> {
// Flatten reshapes a Tensor into an EigenVector.
static typename EigenVector::Type Flatten(FDTensor& tensor) { // NOLINT
return EigenVector::From(tensor, {tensor.Numel()});
}
static typename EigenVector::ConstType Flatten(
const FDTensor& tensor) { // NOLINT
return EigenVector::From(tensor, {tensor.Numel()});
}
};
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
struct EigenMatrix : public EigenTensor<T, 2, MajorType, IndexType> {
static typename EigenMatrix::Type Reshape(FDTensor& tensor, // NOLINT
int num_col_dims) {
int rank = tensor.shape.size();
FDASSERT((num_col_dims > 0 && num_col_dims < rank),
"Input dimension number(num_col_dims) must be between 0 and %d, "
"but received number is %d.",
rank, num_col_dims);
const int n = SizeToAxis(num_col_dims, tensor.shape);
const int d = SizeFromAxis(num_col_dims, tensor.shape);
return EigenMatrix::From(tensor, {n, d});
}
static typename EigenMatrix::ConstType Reshape(const FDTensor& tensor,
int num_col_dims) {
int rank = tensor.shape.size();
FDASSERT((num_col_dims > 0 && num_col_dims < rank),
"Input dimension number(num_col_dims) must be between 0 and %d, "
"but received number is %d.",
rank, num_col_dims);
const int n = SizeToAxis(num_col_dims, tensor.shape);
const int d = SizeFromAxis(num_col_dims, tensor.shape);
return EigenMatrix::From(tensor, {n, d});
}
};
class EigenDeviceWrapper {
public:
static std::shared_ptr<EigenDeviceWrapper> GetInstance();
const Eigen::DefaultDevice* GetDevice() const;
private:
Eigen::DefaultDevice device_;
static std::shared_ptr<EigenDeviceWrapper> instance_;
};
} // namespace function
} // namespace fastdeploy