mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* add paddle_trt in benchmark * update benchmark in device * update benchmark * update result doc * fixed for CI * update python api_docs * update index.rst * add runtime cpp examples * deal with comments * Update infer_paddle_tensorrt.py * Add runtime quick start * deal with comments * fixed reused_input_tensors&&reused_output_tensors * fixed docs * fixed headpose typo * fixed typo * refactor yolov5 * update model infer * refactor pybind for yolov5 * rm origin yolov5 * fixed bugs * rm cuda preprocess * fixed bugs * fixed bugs * fixed bug * fixed bug * fix pybind * rm useless code * add convert_and_permute * fixed bugs * fixed im_info for bs_predict * fixed bug * add bs_predict for yolov5 * Add runtime test and batch eval * deal with comments * fixed bug * update testcase * fixed batch eval bug * fixed preprocess bug * refactor yolov7 * add yolov7 testcase * rm resize_after_load and add is_scale_up * fixed bug * set multi_label true * optimize rvm preprocess * optimizer rvm postprocess * fixed bug * deal with comments Co-authored-by: Jason <928090362@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com>
98 lines
3.5 KiB
Python
Executable File
98 lines
3.5 KiB
Python
Executable File
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
import logging
|
|
from .... import FastDeployModel, ModelFormat
|
|
from .... import c_lib_wrap as C
|
|
|
|
|
|
class RobustVideoMatting(FastDeployModel):
|
|
def __init__(self,
|
|
model_file,
|
|
params_file="",
|
|
runtime_option=None,
|
|
model_format=ModelFormat.ONNX):
|
|
"""Load a video matting model exported by RobustVideoMatting.
|
|
|
|
:param model_file: (str)Path of model file, e.g rvm/rvm_mobilenetv3_fp32.onnx
|
|
:param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX
|
|
"""
|
|
super(RobustVideoMatting, self).__init__(runtime_option)
|
|
|
|
self._model = C.vision.matting.RobustVideoMatting(
|
|
model_file, params_file, self._runtime_option, model_format)
|
|
assert self.initialized, "RobustVideoMatting initialize failed."
|
|
|
|
def predict(self, input_image):
|
|
"""Matting an input image
|
|
|
|
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:return: MattingResult
|
|
"""
|
|
return self._model.predict(input_image)
|
|
|
|
@property
|
|
def size(self):
|
|
"""
|
|
Returns the preprocess image size
|
|
"""
|
|
return self._model.size
|
|
|
|
@property
|
|
def video_mode(self):
|
|
"""
|
|
Whether to open the video mode, if there are some irrelevant pictures, set it to fasle, the default is true
|
|
"""
|
|
return self._model.video_mode
|
|
|
|
@property
|
|
def swap_rb(self):
|
|
"""
|
|
Whether convert to RGB, Set to false if you have converted YUV format images to RGB outside the model, dafault true
|
|
"""
|
|
return self._model.swap_rb
|
|
|
|
@size.setter
|
|
def size(self, wh):
|
|
"""
|
|
Set the preprocess image size
|
|
"""
|
|
assert isinstance(wh, (list, tuple)),\
|
|
"The value to set `size` must be type of tuple or list."
|
|
assert len(wh) == 2,\
|
|
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
|
len(wh))
|
|
self._model.size = wh
|
|
|
|
@video_mode.setter
|
|
def video_mode(self, value):
|
|
"""
|
|
Set video_mode property, the default is true
|
|
"""
|
|
assert isinstance(
|
|
value, bool), "The value to set `video_mode` must be type of bool."
|
|
self._model.video_mode = value
|
|
|
|
@swap_rb.setter
|
|
def swap_rb(self, value):
|
|
"""
|
|
Set swap_rb property, the default is true
|
|
"""
|
|
assert isinstance(
|
|
value, bool), "The value to set `swap_rb` must be type of bool."
|
|
self._model.swap_rb = value
|