Files
FastDeploy/examples/vision/detection/paddledetection/quantize
Jason 3c208125b8 [Doc] Update 0.3.0 to 0.4.0 in all docs (#443)
* Update 0.3.0 to 0.4.0 in all docs

* Update download_prebuilt_libraries.md
2022-10-27 14:33:05 +08:00
..
2022-10-15 22:01:27 +08:00

PaddleDetection 量化模型部署

FastDeploy已支持部署量化模型,并提供一键模型量化的工具. 用户可以使用一键模型量化工具,自行对模型量化后部署, 也可以直接下载FastDeploy提供的量化模型进行部署.

FastDeploy一键模型量化工具

FastDeploy 提供了一键量化工具, 能够简单地通过输入一个配置文件, 对模型进行量化. 详细教程请见: 一键模型量化工具

下载量化完成的PP-YOLOE-l模型

用户也可以直接下载下表中的量化模型进行部署.

模型 推理后端 部署硬件 FP32推理时延 INT8推理时延 加速比 FP32 mAP INT8 mAP 量化方式
ppyoloe_crn_l_300e_coco TensorRT GPU 43.83 31.57 1.39 51.4 50.7 量化蒸馏训练
ppyoloe_crn_l_300e_coco ONNX Runtime CPU 1085.18 475.55 2.29 51.4 50.0 量化蒸馏训练

上表中的数据, 为模型量化前后在FastDeploy部署的端到端推理性能.

  • 测试图片为COCO val2017中的图片.
  • 推理时延为端到端推理(包含前后处理)的平均时延, 单位是毫秒.
  • CPU为Intel(R) Xeon(R) Gold 6271C, GPU为Tesla T4, TensorRT版本8.4.15, 所有测试中固定CPU线程数为1.

详细部署文档