mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
614 lines
28 KiB
Python
614 lines
28 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import os
|
|
import paddle
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
from math import sqrt
|
|
|
|
from paddle.nn.functional.flash_attention import flash_attn_unpadded
|
|
from fastdeploy.model_executor.ops.iluvatar import paged_attention
|
|
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.model_executor.layers.attention.attention import Attention
|
|
from fastdeploy.model_executor.layers.attention.base_attention_backend import (
|
|
AttentionBackend, AttentionMetadata)
|
|
from fastdeploy.worker.forward_meta import ForwardMeta
|
|
|
|
|
|
@dataclass
|
|
class IluvatarAttentionMetadata(AttentionMetadata):
|
|
"""
|
|
IluvatarAttentionMetadata
|
|
"""
|
|
# flash_attn metadata
|
|
cu_seqlens_q: Optional[paddle.Tensor] = None
|
|
cu_seqlens_k: Optional[paddle.Tensor] = None
|
|
fixed_seed_offset: Optional[paddle.Tensor] = None
|
|
attn_mask: Optional[paddle.Tensor] = None
|
|
attn_mask_start_row_indices: Optional[paddle.Tensor] = None
|
|
dropout: float = 0.0
|
|
causal: bool = True
|
|
return_softmax: bool = False
|
|
rng_name: str = ""
|
|
|
|
# paged_attn metadata
|
|
block_tables: Optional[paddle.Tensor] = None
|
|
seq_lens: Optional[paddle.Tensor] = None
|
|
num_kv_heads: int = 1
|
|
scale: float = 1.0
|
|
block_size: int = 1
|
|
max_context_len: int = 1
|
|
alibi_slopes: Optional[paddle.Tensor] = None
|
|
# causal: bool = True
|
|
window_left: int = -1
|
|
window_right: int = -1
|
|
softcap: float = 0.0
|
|
use_cuda_graph: bool = False
|
|
use_sqrt_alibi: bool = False
|
|
|
|
|
|
# qk[seq, h, d], cos/sin [seq, 1, d]
|
|
def apply_rope(qk, cos, sin):
|
|
rotate_half = paddle.reshape(
|
|
paddle.stack([-qk[..., 1::2], qk[..., 0::2]], axis=-1),
|
|
paddle.shape(qk),
|
|
)
|
|
out = paddle.add(paddle.multiply(qk, cos),
|
|
paddle.multiply(rotate_half, sin))
|
|
return paddle.cast(out, qk.dtype)
|
|
|
|
|
|
class IluvatarAttnBackend(AttentionBackend):
|
|
"""
|
|
The backend class that uses paddle native attention implementation.
|
|
Which is used only for testing purpose.
|
|
"""
|
|
|
|
def __init__(self, llm_config: FDConfig, kv_num_heads: int, num_heads: int,
|
|
head_dim: int):
|
|
super().__init__()
|
|
self.attention_metadata = IluvatarAttentionMetadata()
|
|
self.attention_metadata.block_size = llm_config.parallel_config.block_size
|
|
assert llm_config.parallel_config.enc_dec_block_num == 0, "Iluvatar does not support yet"
|
|
|
|
self.attention_metadata.max_context_len = llm_config.parallel_config.max_model_len
|
|
self.attention_metadata.causal = getattr(llm_config.model_config,
|
|
"causal", True)
|
|
self.speculate_method = getattr(llm_config.parallel_config,
|
|
"speculate_method", None)
|
|
self.use_speculate = self.speculate_method is not None
|
|
self.attention_metadata.num_kv_heads = kv_num_heads
|
|
self.attention_metadata.dropout = llm_config.model_config.hidden_dropout_prob
|
|
self.num_heads = num_heads
|
|
self.head_dim = head_dim
|
|
# note: scale need to change if using MLA
|
|
self.attention_metadata.scale = 1.0 / sqrt(head_dim)
|
|
self.num_layers = llm_config.model_config.num_layers
|
|
self.record_block_table_metadata = {}
|
|
self.only_use_flash_attn = int(
|
|
os.getenv("FD_ILUVATAR_ONLY_USE_FLASH_ATTN", 0)) == 1
|
|
self.do_check_kv_cache = int(
|
|
os.getenv("FD_ILUVATAR_CHECK_KV_CACHE_CORRECTNESS", 0)) == 1
|
|
if not self.only_use_flash_attn:
|
|
assert self.attention_metadata.block_size == 16, "Iluvatar paged attn requires block_size must be 16."
|
|
if self.do_check_kv_cache:
|
|
self.record_batched_k = [{} for _ in range(self.num_layers)]
|
|
self.record_batched_v = [{} for _ in range(self.num_layers)]
|
|
|
|
def init_attention_metadata(self, forward_meta: ForwardMeta):
|
|
"""Initialize attntion metadata hence all layers in the forward pass can reuse it."""
|
|
self.attention_metadata.block_tables = forward_meta.block_tables
|
|
self.attention_metadata.attn_mask = forward_meta.attn_mask
|
|
self.attention_metadata.seq_lens = forward_meta.seq_lens_decoder
|
|
self.attention_metadata.cu_seqlens_q = forward_meta.cu_seqlens_q
|
|
self.attention_metadata.cu_seqlens_k = forward_meta.cu_seqlens_k
|
|
|
|
def get_attntion_meta(self):
|
|
"""get_attntion_meta"""
|
|
return self.attention_metadata
|
|
|
|
def get_kv_cache_shape(
|
|
self,
|
|
max_num_blocks: int,
|
|
):
|
|
"""
|
|
Caculate kv cache shape
|
|
"""
|
|
return (max_num_blocks, self.attention_metadata.num_kv_heads,
|
|
self.attention_metadata.block_size, self.head_dim)
|
|
|
|
def get_new_kv(self,
|
|
k,
|
|
v,
|
|
k_cache_id: int,
|
|
v_cache_id: int,
|
|
forward_meta: ForwardMeta,
|
|
debug_paged_attn=False):
|
|
new_k = []
|
|
new_v = []
|
|
tensor_start = 0
|
|
for batch_idx in range(forward_meta.block_tables.shape[0]):
|
|
seq_len = forward_meta.seq_lens_this_time[batch_idx]
|
|
if seq_len == 0:
|
|
continue
|
|
|
|
tensor_end = tensor_start + seq_len
|
|
slice_k = k[tensor_start:tensor_end, :, :]
|
|
slice_v = v[tensor_start:tensor_end, :, :]
|
|
|
|
if seq_len > 1:
|
|
# prefill
|
|
new_k.append(slice_k)
|
|
new_v.append(slice_v)
|
|
else:
|
|
# decode
|
|
assert seq_len == 1
|
|
cur_block_tables = forward_meta.block_tables[batch_idx]
|
|
cur_used_block_tables = cur_block_tables[cur_block_tables !=
|
|
-1]
|
|
assert batch_idx in self.record_block_table_metadata, \
|
|
f"Key error: {batch_idx} vs {self.record_block_table_metadata}."
|
|
cur_block_table_metadata = self.record_block_table_metadata[
|
|
batch_idx]
|
|
record_last_block_id = cur_block_table_metadata["block_id"]
|
|
assert record_last_block_id != -1
|
|
for block_id in cur_used_block_tables:
|
|
if block_id == record_last_block_id:
|
|
cache_end = cur_block_table_metadata["cache_end"]
|
|
block_k_cache = forward_meta.caches[k_cache_id][
|
|
block_id, :, 0:cache_end, :]
|
|
block_v_cache = forward_meta.caches[v_cache_id][
|
|
block_id, :, 0:cache_end, :]
|
|
else:
|
|
block_k_cache = forward_meta.caches[k_cache_id][
|
|
block_id]
|
|
block_v_cache = forward_meta.caches[v_cache_id][
|
|
block_id]
|
|
|
|
# [num_kv_heads, block_size, head_dim] -> [block_size, num_kv_heads, head_dim]
|
|
new_k.append(
|
|
block_k_cache.transpose([1, 0, 2]).contiguous())
|
|
new_v.append(
|
|
block_v_cache.transpose([1, 0, 2]).contiguous())
|
|
if block_id == record_last_block_id:
|
|
break
|
|
|
|
# as line 301 show, record_block_table_metadata updates when executing the last layer,
|
|
# so slice_k and slice_v has been updated in block_k_cache and block_v_cache
|
|
if not (debug_paged_attn and
|
|
(k_cache_id / 2 == self.num_layers - 1)):
|
|
new_k.append(slice_k)
|
|
new_v.append(slice_v)
|
|
|
|
tensor_start = tensor_end
|
|
|
|
if len(new_k) == 1:
|
|
return new_k[0], new_v[0]
|
|
else:
|
|
new_k = paddle.concat(new_k, axis=0)
|
|
new_v = paddle.concat(new_v, axis=0)
|
|
return new_k, new_v
|
|
|
|
def update_kv_cache(self,
|
|
k,
|
|
v,
|
|
k_cache_id: int,
|
|
v_cache_id: int,
|
|
layer_id: int,
|
|
forward_meta: ForwardMeta,
|
|
specific_batch_ids=None,
|
|
debug_paged_attn=False):
|
|
# [num_tokens, num_kv_heads, head_dim] -> [num_kv_heads, num_tokens, head_dim]
|
|
trans_k = k.transpose([1, 0, 2]).contiguous()
|
|
trans_v = v.transpose([1, 0, 2]).contiguous()
|
|
tensor_start = 0
|
|
for batch_idx in range(forward_meta.block_tables.shape[0]):
|
|
if specific_batch_ids is not None and batch_idx not in specific_batch_ids:
|
|
continue
|
|
seq_len = forward_meta.seq_lens_this_time[batch_idx]
|
|
if seq_len == 0:
|
|
continue
|
|
|
|
tensor_end = tensor_start + seq_len
|
|
slice_trans_k = trans_k[:, tensor_start:tensor_end, :]
|
|
slice_trans_v = trans_v[:, tensor_start:tensor_end, :]
|
|
|
|
cur_block_tables = forward_meta.block_tables[batch_idx]
|
|
cur_used_block_tables = cur_block_tables[cur_block_tables != -1]
|
|
|
|
# prefill
|
|
if seq_len > 1:
|
|
cache_start = 0
|
|
cur_used_num_blocks = cur_used_block_tables.shape[0]
|
|
for i, block_id in enumerate(cur_used_block_tables):
|
|
# last block: seq_len - cache_start <= block_size
|
|
if i == cur_used_num_blocks - 1:
|
|
cache_end = seq_len - cache_start
|
|
assert cache_end <= self.attention_metadata.block_size
|
|
forward_meta.caches[k_cache_id][
|
|
block_id, :,
|
|
0:cache_end, :] = slice_trans_k[:, cache_start:
|
|
seq_len, :]
|
|
forward_meta.caches[v_cache_id][
|
|
block_id, :,
|
|
0:cache_end, :] = slice_trans_v[:, cache_start:
|
|
seq_len, :]
|
|
if layer_id == self.num_layers - 1:
|
|
self.record_block_table_metadata[batch_idx] = {
|
|
"block_id": block_id.item(),
|
|
"cache_end": cache_end
|
|
}
|
|
# non last block: seq_lens_this_time > block_size
|
|
else:
|
|
assert seq_len > self.attention_metadata.block_size
|
|
cache_end = cache_start + self.attention_metadata.block_size
|
|
forward_meta.caches[k_cache_id][
|
|
block_id] = slice_trans_k[:,
|
|
cache_start:cache_end, :]
|
|
forward_meta.caches[v_cache_id][
|
|
block_id] = slice_trans_v[:,
|
|
cache_start:cache_end, :]
|
|
cache_start += self.attention_metadata.block_size
|
|
else:
|
|
# decode
|
|
assert seq_len == 1
|
|
cur_last_block_id = cur_used_block_tables[-1].item()
|
|
assert cur_last_block_id != -1
|
|
assert batch_idx in self.record_block_table_metadata, \
|
|
f"Key error: {batch_idx} vs {self.record_block_table_metadata}."
|
|
cur_block_table_metadata = self.record_block_table_metadata[
|
|
batch_idx]
|
|
record_last_block_id = cur_block_table_metadata["block_id"]
|
|
|
|
if cur_last_block_id == record_last_block_id:
|
|
# not alloc new block in decode stage
|
|
cache_start = cur_block_table_metadata["cache_end"]
|
|
else:
|
|
# alloc new block in decode stage
|
|
cache_start = 0
|
|
|
|
cache_end = cache_start + 1
|
|
assert cache_end <= self.attention_metadata.block_size
|
|
|
|
# paged attn API will update kv cache with inplace mode
|
|
if not debug_paged_attn:
|
|
forward_meta.caches[k_cache_id][
|
|
cur_last_block_id, :,
|
|
cache_start:cache_end, :] = slice_trans_k
|
|
forward_meta.caches[v_cache_id][
|
|
cur_last_block_id, :,
|
|
cache_start:cache_end, :] = slice_trans_v
|
|
|
|
# update record_block_table_metadata
|
|
if layer_id == self.num_layers - 1:
|
|
self.record_block_table_metadata[batch_idx][
|
|
"block_id"] = cur_last_block_id
|
|
self.record_block_table_metadata[batch_idx][
|
|
"cache_end"] = cache_end
|
|
|
|
tensor_start = tensor_end
|
|
|
|
def _check_new_kv_correctness(self, k, v, new_k, new_v, layer_id: int,
|
|
forward_meta: ForwardMeta):
|
|
tensor_start = 0
|
|
for batch_idx, seq_lens_this_time in enumerate(
|
|
forward_meta.seq_lens_this_time):
|
|
if seq_lens_this_time == 0:
|
|
continue
|
|
# note: the second request will also use the batch_idx 0 instead of 1 in
|
|
# the streaming inference mode, so use seq_lens_this_time > 1 with the same
|
|
# batch_idx represents the second request comes.
|
|
if seq_lens_this_time > 1 and batch_idx in self.record_batched_k[
|
|
layer_id]:
|
|
print(
|
|
f"clear self.record_batched_batched_k: "
|
|
f"layer_id={layer_id}, batch_id={batch_idx}, "
|
|
f"record_lens={len(self.record_batched_k[layer_id][batch_idx])}"
|
|
)
|
|
self.record_batched_k[layer_id][batch_idx].clear()
|
|
self.record_batched_v[layer_id][batch_idx].clear()
|
|
tensor_end = tensor_start + seq_lens_this_time
|
|
slice_k = k[tensor_start:tensor_end, :, :]
|
|
slice_v = v[tensor_start:tensor_end, :, :]
|
|
if batch_idx not in self.record_batched_k[layer_id]:
|
|
self.record_batched_k[layer_id][batch_idx] = []
|
|
self.record_batched_v[layer_id][batch_idx] = []
|
|
self.record_batched_k[layer_id][batch_idx].append(slice_k)
|
|
self.record_batched_v[layer_id][batch_idx].append(slice_v)
|
|
tensor_start = tensor_end
|
|
|
|
ref_k, ref_v = [], []
|
|
for batch_idx, seq_lens_this_time in enumerate(
|
|
forward_meta.seq_lens_this_time):
|
|
if seq_lens_this_time == 0:
|
|
continue
|
|
bached_k_list = self.record_batched_k[layer_id][batch_idx]
|
|
bached_v_list = self.record_batched_v[layer_id][batch_idx]
|
|
ref_k.extend(bached_k_list)
|
|
ref_v.extend(bached_v_list)
|
|
|
|
ref_k = paddle.concat(ref_k, axis=0)
|
|
ref_v = paddle.concat(ref_v, axis=0)
|
|
print(
|
|
f"_check_new_kv_correctness: layer_id={layer_id}, "
|
|
f"k.shape={k.shape}, v.shape={v.shape}, "
|
|
f"ref_k.shape={ref_k.shape}, ref_v.shape={ref_v.shape}, "
|
|
f"new_k.shape={new_k.shape}, new_v.shape={new_v.shape}, "
|
|
f"len(self.record_batched_k[layer_id])={len(self.record_batched_k[layer_id])}, "
|
|
f"len(self.record_batched_k[layer_id][0])={len(self.record_batched_k[layer_id][0])}, "
|
|
f"forward_meta.seq_lens_this_time={forward_meta.seq_lens_this_time}"
|
|
f"ref_k[-2:, 0:2, 0:2]={ref_k[-2:, 0:2, 0:2]}, "
|
|
f"ref_v[-2:, 0:2, 0:2]={ref_v[-2:, 0:2, 0:2]}, "
|
|
f"new_k[-2:, 0:2, 0:2]={new_k[-2:, 0:2, 0:2]}, "
|
|
f"new_v[-2:, 0:2, 0:2]={new_v[-2:, 0:2, 0:2]}")
|
|
assert paddle.allclose(
|
|
ref_k.to("cpu").to(paddle.float32),
|
|
new_k.to("cpu").to(paddle.float32))
|
|
assert paddle.allclose(
|
|
ref_v.to("cpu").to(paddle.float32),
|
|
new_v.to("cpu").to(paddle.float32))
|
|
|
|
def get_splited_qkv(self, qkv: paddle.Tensor, forward_meta: ForwardMeta):
|
|
q_end = self.num_heads * self.head_dim
|
|
k_end = q_end + self.attention_metadata.num_kv_heads * self.head_dim
|
|
v_end = k_end + self.attention_metadata.num_kv_heads * self.head_dim
|
|
assert v_end == qkv.shape[
|
|
-1], f"Shape mistach: {v_end} vs {qkv.shape[-1]}"
|
|
assert qkv.shape[0] == forward_meta.cu_seqlens_q[-1]
|
|
|
|
q = qkv[..., 0:q_end]
|
|
k = qkv[..., q_end:k_end]
|
|
v = qkv[..., k_end:v_end]
|
|
q = q.view([-1, self.num_heads, self.head_dim]).contiguous()
|
|
k = k.view([-1, self.attention_metadata.num_kv_heads,
|
|
self.head_dim]).contiguous()
|
|
v = v.view([-1, self.attention_metadata.num_kv_heads,
|
|
self.head_dim]).contiguous()
|
|
# forward_meta.seq_lens_this_time [max_batch,]
|
|
for batch_idx in range(forward_meta.seq_lens_this_time.shape[0]):
|
|
seq_len_i = forward_meta.seq_lens_this_time[batch_idx]
|
|
if seq_len_i == 0:
|
|
continue
|
|
cached_kv_len = forward_meta.seq_lens_decoder[batch_idx][0]
|
|
cu_seq_start_q = forward_meta.cu_seqlens_q[batch_idx]
|
|
cu_seq_end_q = forward_meta.cu_seqlens_q[batch_idx + 1]
|
|
# forward_meta.rotary_embs is [2, 1, S, 1, D]
|
|
if forward_meta.rotary_embs is not None:
|
|
cos = forward_meta.rotary_embs[0, 0,
|
|
cached_kv_len:cached_kv_len +
|
|
seq_len_i, :, :]
|
|
sin = forward_meta.rotary_embs[1, 0,
|
|
cached_kv_len:cached_kv_len +
|
|
seq_len_i, :, :]
|
|
q[cu_seq_start_q:cu_seq_end_q] = apply_rope(
|
|
q[cu_seq_start_q:cu_seq_end_q], cos, sin)
|
|
k[cu_seq_start_q:cu_seq_end_q] = apply_rope(
|
|
k[cu_seq_start_q:cu_seq_end_q], cos, sin)
|
|
|
|
return q, k, v
|
|
|
|
def get_splited_info_by_stage(self, q, k, v, forward_meta: ForwardMeta):
|
|
prefill_info_dict = {"q": [], "k": [], "v": [], "batch_ids": []}
|
|
decode_info_dict = {"q": [], "k": [], "v": [], "batch_ids": []}
|
|
tensor_start = 0
|
|
for batch_idx, seq_lens_this_time in enumerate(
|
|
forward_meta.seq_lens_this_time):
|
|
if seq_lens_this_time == 0:
|
|
continue
|
|
tensor_end = tensor_start + seq_lens_this_time
|
|
slice_q = q[tensor_start:tensor_end, :, :]
|
|
slice_k = k[tensor_start:tensor_end, :, :]
|
|
slice_v = v[tensor_start:tensor_end, :, :]
|
|
if seq_lens_this_time > 1:
|
|
prefill_info_dict["q"].append(slice_q)
|
|
prefill_info_dict["k"].append(slice_k)
|
|
prefill_info_dict["v"].append(slice_v)
|
|
prefill_info_dict["batch_ids"].append(batch_idx)
|
|
else:
|
|
assert seq_lens_this_time == 1
|
|
decode_info_dict["q"].append(slice_q)
|
|
decode_info_dict["k"].append(slice_k)
|
|
decode_info_dict["v"].append(slice_v)
|
|
decode_info_dict["batch_ids"].append(batch_idx)
|
|
tensor_start = tensor_end
|
|
|
|
if len(prefill_info_dict["batch_ids"]) > 0:
|
|
prefill_info_dict["q"] = paddle.concat(prefill_info_dict["q"],
|
|
axis=0)
|
|
prefill_info_dict["k"] = paddle.concat(prefill_info_dict["k"],
|
|
axis=0)
|
|
prefill_info_dict["v"] = paddle.concat(prefill_info_dict["v"],
|
|
axis=0)
|
|
cu_seq_ids = list(
|
|
map(lambda x: x + 1, prefill_info_dict["batch_ids"]))
|
|
prefill_info_dict["cu_seq_ids"] = [0, *cu_seq_ids]
|
|
|
|
if len(decode_info_dict["batch_ids"]) > 0:
|
|
decode_info_dict["q"] = paddle.concat(decode_info_dict["q"],
|
|
axis=0)
|
|
decode_info_dict["k"] = paddle.concat(decode_info_dict["k"],
|
|
axis=0)
|
|
decode_info_dict["v"] = paddle.concat(decode_info_dict["v"],
|
|
axis=0)
|
|
|
|
return prefill_info_dict, decode_info_dict
|
|
|
|
def merge_output(self, prefill_out, decode_out, forward_meta: ForwardMeta):
|
|
assert not (prefill_out is None and decode_out
|
|
is None), "prefill and decode output cannot both be None"
|
|
if prefill_out is None:
|
|
return decode_out
|
|
elif decode_out is None:
|
|
return prefill_out
|
|
else:
|
|
merged_output = []
|
|
prefill_tensor_start = 0
|
|
decode_tensor_start = 0
|
|
for seq_lens_this_time in forward_meta.seq_lens_this_time:
|
|
if seq_lens_this_time == 0:
|
|
continue
|
|
if seq_lens_this_time > 1:
|
|
tensor_end = prefill_tensor_start + seq_lens_this_time
|
|
merged_output.append(
|
|
prefill_out[prefill_tensor_start:tensor_end, :, :])
|
|
prefill_tensor_start = tensor_end
|
|
else:
|
|
assert seq_lens_this_time == 1
|
|
tensor_end = decode_tensor_start + seq_lens_this_time
|
|
merged_output.append(
|
|
decode_out[decode_tensor_start:tensor_end, :, :])
|
|
decode_tensor_start = tensor_end
|
|
|
|
assert prefill_tensor_start == prefill_out.shape[0], \
|
|
f"prefill merged unfinished: {prefill_tensor_start} vs {prefill_out.shape[0]}"
|
|
assert decode_tensor_start == decode_out.shape[0], \
|
|
f"decode merged unfinished: {decode_tensor_start} vs {decode_out.shape[0]}"
|
|
merged_output = paddle.concat(merged_output, axis=0)
|
|
return merged_output
|
|
|
|
def forward_mixed(
|
|
self,
|
|
q: paddle.Tensor,
|
|
k: paddle.Tensor,
|
|
v: paddle.Tensor,
|
|
qkv: paddle.Tensor,
|
|
compressed_kv: paddle.Tensor,
|
|
k_pe: paddle.Tensor,
|
|
layer: Attention,
|
|
forward_meta: ForwardMeta,
|
|
):
|
|
"""
|
|
forward_mixed
|
|
"""
|
|
assert not self.use_speculate, "IluvatarAttnBackend cannot support speculate now"
|
|
layer_id = layer.layer_id
|
|
k_cache_id = layer_id * 2
|
|
v_cache_id = k_cache_id + 1
|
|
|
|
assert qkv is not None
|
|
q_dim = qkv.dim()
|
|
q, k, v = self.get_splited_qkv(qkv, forward_meta)
|
|
|
|
if self.only_use_flash_attn:
|
|
new_k, new_v = self.get_new_kv(k, v, k_cache_id, v_cache_id,
|
|
forward_meta)
|
|
if self.do_check_kv_cache:
|
|
self._check_new_kv_correctness(k, v, new_k, new_v, layer_id,
|
|
forward_meta)
|
|
|
|
out = flash_attn_unpadded(
|
|
q,
|
|
new_k,
|
|
new_v,
|
|
cu_seqlens_q=self.attention_metadata.cu_seqlens_q,
|
|
cu_seqlens_k=self.attention_metadata.cu_seqlens_k,
|
|
max_seqlen_q=self.attention_metadata.max_context_len,
|
|
max_seqlen_k=self.attention_metadata.max_context_len,
|
|
scale=self.attention_metadata.scale,
|
|
dropout=self.attention_metadata.dropout,
|
|
causal=self.attention_metadata.causal,
|
|
return_softmax=self.attention_metadata.return_softmax)[0]
|
|
|
|
self.update_kv_cache(k, v, k_cache_id, v_cache_id, layer_id,
|
|
forward_meta)
|
|
else:
|
|
prefill_info_dict, decode_info_dict = self.get_splited_info_by_stage(
|
|
q, k, v, forward_meta)
|
|
prefill_out, decode_out = None, None
|
|
|
|
if len(prefill_info_dict["batch_ids"]) > 0:
|
|
prefill_out = flash_attn_unpadded(
|
|
prefill_info_dict["q"],
|
|
prefill_info_dict["k"],
|
|
prefill_info_dict["v"],
|
|
cu_seqlens_q=forward_meta.cu_seqlens_q[
|
|
prefill_info_dict["cu_seq_ids"]],
|
|
cu_seqlens_k=forward_meta.cu_seqlens_k[
|
|
prefill_info_dict["cu_seq_ids"]],
|
|
max_seqlen_q=self.attention_metadata.max_context_len,
|
|
max_seqlen_k=self.attention_metadata.max_context_len,
|
|
scale=self.attention_metadata.scale,
|
|
dropout=self.attention_metadata.dropout,
|
|
causal=self.attention_metadata.causal,
|
|
return_softmax=self.attention_metadata.return_softmax)[0]
|
|
self.update_kv_cache(
|
|
prefill_info_dict["k"],
|
|
prefill_info_dict["v"],
|
|
k_cache_id,
|
|
v_cache_id,
|
|
layer_id,
|
|
forward_meta,
|
|
specific_batch_ids=prefill_info_dict['batch_ids'])
|
|
|
|
if len(decode_info_dict["batch_ids"]) > 0:
|
|
k_cache = forward_meta.caches[k_cache_id]
|
|
v_cache = forward_meta.caches[v_cache_id]
|
|
|
|
decode_out = paged_attention(
|
|
decode_info_dict["q"],
|
|
k_cache,
|
|
v_cache,
|
|
block_tables=forward_meta.block_tables[
|
|
decode_info_dict["batch_ids"], :],
|
|
seq_lens=forward_meta.seq_lens_decoder[
|
|
decode_info_dict["batch_ids"], 0] + 1,
|
|
num_kv_heads=self.attention_metadata.num_kv_heads,
|
|
scale=self.attention_metadata.scale,
|
|
block_size=self.attention_metadata.block_size,
|
|
max_context_len=self.attention_metadata.max_context_len,
|
|
alibi_slopes=self.attention_metadata.alibi_slopes,
|
|
causal=self.attention_metadata.causal,
|
|
window_left=self.attention_metadata.window_left,
|
|
window_right=self.attention_metadata.window_right,
|
|
softcap=self.attention_metadata.softcap,
|
|
use_cuda_graph=self.attention_metadata.use_cuda_graph,
|
|
use_sqrt_alibi=self.attention_metadata.use_sqrt_alibi,
|
|
k=decode_info_dict["k"],
|
|
v=decode_info_dict["v"])
|
|
|
|
if self.do_check_kv_cache:
|
|
self.update_kv_cache(
|
|
decode_info_dict['k'],
|
|
decode_info_dict['v'],
|
|
k_cache_id,
|
|
v_cache_id,
|
|
layer_id,
|
|
forward_meta,
|
|
specific_batch_ids=decode_info_dict['batch_ids'],
|
|
debug_paged_attn=True)
|
|
|
|
if self.do_check_kv_cache:
|
|
new_k, new_v = self.get_new_kv(k,
|
|
v,
|
|
k_cache_id,
|
|
v_cache_id,
|
|
forward_meta,
|
|
debug_paged_attn=True)
|
|
self._check_new_kv_correctness(k, v, new_k, new_v, layer_id,
|
|
forward_meta)
|
|
|
|
out = self.merge_output(prefill_out, decode_out, forward_meta)
|
|
|
|
if q_dim == 2:
|
|
out = out.view([-1, self.num_heads * self.head_dim])
|
|
|
|
return out
|