mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			70 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			70 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| #include <cstdio>
 | |
| #include <iostream>
 | |
| #include "paddle/extension.h"
 | |
| #include "x86simdsort-static-incl.h"
 | |
| 
 | |
| void probs_sort(const float *probs,
 | |
|                 int64_t *ProbsIds,
 | |
|                 float *ProbsVals,
 | |
|                 int vocab_size,
 | |
|                 int bsz) {
 | |
|     float cursum = 0;
 | |
|     std::vector<int64_t> elementsIds(vocab_size);
 | |
|     std::vector<float> elementsProbs(vocab_size);
 | |
| #pragma omp parallel for
 | |
|     for (int j = 0; j < vocab_size; j++) {
 | |
|         elementsIds[j] = j;
 | |
|         elementsProbs[j] = probs[j];
 | |
|     }
 | |
|     x86simdsortStatic::keyvalue_qsort(
 | |
|         elementsProbs.data(), elementsIds.data(), vocab_size, false, true);
 | |
| #pragma omp parallel for
 | |
|     for (int j = 0; j < vocab_size; ++j) {
 | |
|         ProbsVals[j] = elementsProbs[j];
 | |
|         ProbsIds[j] = elementsIds[j];
 | |
|     }
 | |
| }
 | |
| std::vector<paddle::Tensor> SimdSort(const paddle::Tensor &probs) {
 | |
|     const int bsz = probs.shape()[0];
 | |
|     const int vocab_size = probs.shape()[1];
 | |
|     auto sorted_indices = paddle::empty(
 | |
|         {bsz, vocab_size}, paddle::DataType::INT64, probs.place());
 | |
|     auto sorted_probs = paddle::empty(
 | |
|         {bsz, vocab_size}, paddle::DataType::FLOAT32, probs.place());
 | |
|     probs_sort(probs.data<float>(),
 | |
|                const_cast<int64_t *>(sorted_indices.data<int64_t>()),
 | |
|                const_cast<float *>(sorted_probs.data<float>()),
 | |
|                vocab_size,
 | |
|                bsz);
 | |
|     return {sorted_indices, sorted_probs};
 | |
| }
 | |
| std::vector<std::vector<int64_t>> SimdSortInferShape(
 | |
|     const std::vector<int64_t> &probs_shape) {
 | |
|     int64_t bsz = probs_shape[0];
 | |
|     int64_t vocab_size = probs_shape[1];
 | |
|     return {{bsz, vocab_size}, {bsz, vocab_size}};
 | |
| }
 | |
| std::vector<paddle::DataType> SimdSortInferDtype(
 | |
|     const paddle::DataType &probs_dtype) {
 | |
|     return {paddle::DataType::INT64, paddle::DataType::FLOAT32};
 | |
| }
 | |
| PD_BUILD_STATIC_OP(simd_sort)
 | |
|     .Inputs({"probs"})
 | |
|     .Outputs({"sorted_indices_out", "sorted_probs_out"})
 | |
|     .SetInferShapeFn(PD_INFER_SHAPE(SimdSortInferShape))
 | |
|     .SetInferDtypeFn(PD_INFER_DTYPE(SimdSortInferDtype))
 | |
|     .SetKernelFn(PD_KERNEL(SimdSort));
 | 
