mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 12:52:29 +08:00
70 lines
2.6 KiB
C++
70 lines
2.6 KiB
C++
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include <cstdio>
|
|
#include <iostream>
|
|
#include "paddle/extension.h"
|
|
#include "x86simdsort-static-incl.h"
|
|
|
|
void probs_sort(const float *probs,
|
|
int64_t *ProbsIds,
|
|
float *ProbsVals,
|
|
int vocab_size,
|
|
int bsz) {
|
|
float cursum = 0;
|
|
std::vector<int64_t> elementsIds(vocab_size);
|
|
std::vector<float> elementsProbs(vocab_size);
|
|
#pragma omp parallel for
|
|
for (int j = 0; j < vocab_size; j++) {
|
|
elementsIds[j] = j;
|
|
elementsProbs[j] = probs[j];
|
|
}
|
|
x86simdsortStatic::keyvalue_qsort(
|
|
elementsProbs.data(), elementsIds.data(), vocab_size, false, true);
|
|
#pragma omp parallel for
|
|
for (int j = 0; j < vocab_size; ++j) {
|
|
ProbsVals[j] = elementsProbs[j];
|
|
ProbsIds[j] = elementsIds[j];
|
|
}
|
|
}
|
|
std::vector<paddle::Tensor> SimdSort(const paddle::Tensor &probs) {
|
|
const int bsz = probs.shape()[0];
|
|
const int vocab_size = probs.shape()[1];
|
|
auto sorted_indices = paddle::empty(
|
|
{bsz, vocab_size}, paddle::DataType::INT64, probs.place());
|
|
auto sorted_probs = paddle::empty(
|
|
{bsz, vocab_size}, paddle::DataType::FLOAT32, probs.place());
|
|
probs_sort(probs.data<float>(),
|
|
const_cast<int64_t *>(sorted_indices.data<int64_t>()),
|
|
const_cast<float *>(sorted_probs.data<float>()),
|
|
vocab_size,
|
|
bsz);
|
|
return {sorted_indices, sorted_probs};
|
|
}
|
|
std::vector<std::vector<int64_t>> SimdSortInferShape(
|
|
const std::vector<int64_t> &probs_shape) {
|
|
int64_t bsz = probs_shape[0];
|
|
int64_t vocab_size = probs_shape[1];
|
|
return {{bsz, vocab_size}, {bsz, vocab_size}};
|
|
}
|
|
std::vector<paddle::DataType> SimdSortInferDtype(
|
|
const paddle::DataType &probs_dtype) {
|
|
return {paddle::DataType::INT64, paddle::DataType::FLOAT32};
|
|
}
|
|
PD_BUILD_STATIC_OP(simd_sort)
|
|
.Inputs({"probs"})
|
|
.Outputs({"sorted_indices_out", "sorted_probs_out"})
|
|
.SetInferShapeFn(PD_INFER_SHAPE(SimdSortInferShape))
|
|
.SetInferDtypeFn(PD_INFER_DTYPE(SimdSortInferDtype))
|
|
.SetKernelFn(PD_KERNEL(SimdSort));
|