Files
FastDeploy/tests/model_loader/test_torch_model.py
lizexu123 455205f991
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
[Features] support hugging face qwen3 moe (#3649)
* split ut

* qwen3-30B-A3B

* fix

* add test

* add test_torch_model.py

* fix test_torch_model.py

* delete print

* fix moe

* delete init.py

* fix

* fix

---------

Co-authored-by: bukejiyu <395822456@qq.com>
Co-authored-by: bukejiyu <52310069+bukejiyu@users.noreply.github.com>
2025-08-30 15:26:05 +08:00

149 lines
4.3 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import pytest
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.abspath(os.path.join(current_dir, ".."))
if project_root not in sys.path:
sys.path.insert(0, project_root)
from tests.model_loader.utils import (
calculate_diff_rate,
form_model_get_output_topp0,
get_torch_model_path,
run_with_timeout,
)
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8313))
prompts = ["北京天安门在哪里?"]
def check_result_against_baseline(outputs, baseline_file, threshold=0.05):
"""
Check model outputs against baseline file.
"""
try:
with open(baseline_file, "r", encoding="utf-8") as f:
baseline_content = f.read().strip()
except FileNotFoundError:
raise AssertionError(f"Baseline file not found: {baseline_file}")
# Combine all outputs into a single string for comparison
current_content = ""
for idx, output in enumerate(outputs):
# output format: (token_ids, text)
_, text = output
if isinstance(text, list):
text_str = "".join(text)
else:
text_str = text
current_content += text_str
temp_file = f"{os.path.basename(baseline_file)}-current"
with open(temp_file, "w", encoding="utf-8") as f:
f.write(current_content)
diff_rate = calculate_diff_rate(current_content, baseline_content)
if diff_rate >= threshold:
raise AssertionError(
f"Output differs from baseline file by too much ({diff_rate:.4%}):\n"
f"Current output: {current_content!r}\n"
f"Baseline content: {baseline_content!r}\n"
f"Current output saved to: {temp_file}"
)
hugging_face_model_param_map = {
"Qwen2.5-7B-Instruct": {
"tensor_parallel_size": 2,
"quantizations": ["wint8"],
},
"Qwen3-30B-A3B": {
"tensor_parallel_size": 2,
"quantizations": ["wint8"],
},
}
hf_params = []
for model, cfg in hugging_face_model_param_map.items():
for q in cfg["quantizations"]:
hf_params.append(
pytest.param(
model,
cfg.get("tensor_parallel_size", 2),
cfg.get("max_model_len", 1024),
q,
cfg.get("max_tokens", 100),
marks=[pytest.mark.core_model],
)
)
@pytest.mark.parametrize(
"model_name_or_path,tensor_parallel_size,max_model_len,quantization,max_tokens",
hf_params,
)
def test_model_against_baseline(
fd_runner,
model_name_or_path: str,
tensor_parallel_size: int,
max_model_len: int,
max_tokens: int,
quantization: str,
) -> None:
"""
Test that model output matches baseline file.
"""
torch_model_path = get_torch_model_path(model_name_or_path)
# Run model
hf_outputs = run_with_timeout(
target=form_model_get_output_topp0,
args=(
fd_runner,
torch_model_path,
tensor_parallel_size,
max_model_len,
max_tokens,
quantization,
"default_v1",
FD_ENGINE_QUEUE_PORT,
prompts,
),
)
# Determine baseline file path based on model name
base_path = os.getenv("MODEL_PATH", "")
# Get baseline suffix from config
model_config = hugging_face_model_param_map.get(model_name_or_path, {})
baseline_suffix = model_config.get("baseline_suffix", "tp2")
baseline_filename = f"{model_name_or_path}-{baseline_suffix}"
if base_path:
baseline_file = os.path.join(base_path, baseline_filename)
else:
baseline_file = baseline_filename
# Compare against baseline file
check_result_against_baseline(hf_outputs, baseline_file, threshold=0.05)