mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
* split ut * qwen3-30B-A3B * fix * add test * add test_torch_model.py * fix test_torch_model.py * delete print * fix moe * delete init.py * fix * fix --------- Co-authored-by: bukejiyu <395822456@qq.com> Co-authored-by: bukejiyu <52310069+bukejiyu@users.noreply.github.com>
149 lines
4.3 KiB
Python
149 lines
4.3 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import sys
|
|
|
|
import pytest
|
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
project_root = os.path.abspath(os.path.join(current_dir, ".."))
|
|
if project_root not in sys.path:
|
|
sys.path.insert(0, project_root)
|
|
|
|
from tests.model_loader.utils import (
|
|
calculate_diff_rate,
|
|
form_model_get_output_topp0,
|
|
get_torch_model_path,
|
|
run_with_timeout,
|
|
)
|
|
|
|
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8313))
|
|
|
|
prompts = ["北京天安门在哪里?"]
|
|
|
|
|
|
def check_result_against_baseline(outputs, baseline_file, threshold=0.05):
|
|
"""
|
|
Check model outputs against baseline file.
|
|
"""
|
|
try:
|
|
with open(baseline_file, "r", encoding="utf-8") as f:
|
|
baseline_content = f.read().strip()
|
|
except FileNotFoundError:
|
|
raise AssertionError(f"Baseline file not found: {baseline_file}")
|
|
|
|
# Combine all outputs into a single string for comparison
|
|
current_content = ""
|
|
for idx, output in enumerate(outputs):
|
|
# output format: (token_ids, text)
|
|
_, text = output
|
|
|
|
if isinstance(text, list):
|
|
text_str = "".join(text)
|
|
else:
|
|
text_str = text
|
|
|
|
current_content += text_str
|
|
|
|
temp_file = f"{os.path.basename(baseline_file)}-current"
|
|
with open(temp_file, "w", encoding="utf-8") as f:
|
|
f.write(current_content)
|
|
|
|
diff_rate = calculate_diff_rate(current_content, baseline_content)
|
|
|
|
if diff_rate >= threshold:
|
|
raise AssertionError(
|
|
f"Output differs from baseline file by too much ({diff_rate:.4%}):\n"
|
|
f"Current output: {current_content!r}\n"
|
|
f"Baseline content: {baseline_content!r}\n"
|
|
f"Current output saved to: {temp_file}"
|
|
)
|
|
|
|
|
|
hugging_face_model_param_map = {
|
|
"Qwen2.5-7B-Instruct": {
|
|
"tensor_parallel_size": 2,
|
|
"quantizations": ["wint8"],
|
|
},
|
|
"Qwen3-30B-A3B": {
|
|
"tensor_parallel_size": 2,
|
|
"quantizations": ["wint8"],
|
|
},
|
|
}
|
|
|
|
hf_params = []
|
|
for model, cfg in hugging_face_model_param_map.items():
|
|
for q in cfg["quantizations"]:
|
|
hf_params.append(
|
|
pytest.param(
|
|
model,
|
|
cfg.get("tensor_parallel_size", 2),
|
|
cfg.get("max_model_len", 1024),
|
|
q,
|
|
cfg.get("max_tokens", 100),
|
|
marks=[pytest.mark.core_model],
|
|
)
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model_name_or_path,tensor_parallel_size,max_model_len,quantization,max_tokens",
|
|
hf_params,
|
|
)
|
|
def test_model_against_baseline(
|
|
fd_runner,
|
|
model_name_or_path: str,
|
|
tensor_parallel_size: int,
|
|
max_model_len: int,
|
|
max_tokens: int,
|
|
quantization: str,
|
|
) -> None:
|
|
"""
|
|
Test that model output matches baseline file.
|
|
"""
|
|
torch_model_path = get_torch_model_path(model_name_or_path)
|
|
|
|
# Run model
|
|
hf_outputs = run_with_timeout(
|
|
target=form_model_get_output_topp0,
|
|
args=(
|
|
fd_runner,
|
|
torch_model_path,
|
|
tensor_parallel_size,
|
|
max_model_len,
|
|
max_tokens,
|
|
quantization,
|
|
"default_v1",
|
|
FD_ENGINE_QUEUE_PORT,
|
|
prompts,
|
|
),
|
|
)
|
|
|
|
# Determine baseline file path based on model name
|
|
base_path = os.getenv("MODEL_PATH", "")
|
|
|
|
# Get baseline suffix from config
|
|
model_config = hugging_face_model_param_map.get(model_name_or_path, {})
|
|
baseline_suffix = model_config.get("baseline_suffix", "tp2")
|
|
baseline_filename = f"{model_name_or_path}-{baseline_suffix}"
|
|
|
|
if base_path:
|
|
baseline_file = os.path.join(base_path, baseline_filename)
|
|
else:
|
|
baseline_file = baseline_filename
|
|
|
|
# Compare against baseline file
|
|
check_result_against_baseline(hf_outputs, baseline_file, threshold=0.05)
|