Files
FastDeploy/tests/input/test_qwen_vl_processor.py
Yuanle Liu cbce94a00e rename ernie_xxx to ernie4_5_xxx (#3621)
* rename ernie_xxx to ernie4_5_xxx

* ci fix
2025-08-26 19:29:27 +08:00

249 lines
9.2 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import unittest
from unittest.mock import MagicMock, patch
import numpy as np
from PIL import Image
from fastdeploy.engine.request import Request
from fastdeploy.input.qwen_vl_processor import QwenVLProcessor
def mock_pil_image(height, width):
"""
Generate mock random RGB image
Args:
height: Image height in pixels
width: Image width in pixels
Returns:
PIL.Image object with random RGB data
"""
rgb_image = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
return Image.fromarray(rgb_image)
def mock_read_frames(height: int, width: int, nums_frame: int, fps: int):
"""
Generate mock video frames with metadata for testing purposes
Creates synthetic video data by generating random RGB frames and constructing
corresponding metadata to simulate real video processing.
Args:
height (int): Height of video frames in pixels
width (int): Width of video frames in pixels
nums_frame (int): Number of frames to generate
fps (int): Frames per second for the mock video
Returns:
tuple: A tuple containing:
frames (numpy.ndarray): Array of shape (nums_frame, height, width, 3)
containing randomly generated RGB frames
meta (dict): Dictionary with video metadata:
- fps (int): Frames per second (same as input)
- duration (float): Calculated duration in seconds (nums_frame/fps)
- num_of_frame (int): Number of frames (same as nums_frame input)
"""
frames = []
for _ in range(nums_frame):
frame = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
frames.append(frame)
frames = np.stack(frames, axis=0)
meta = {
"fps": fps,
"duration": nums_frame / fps,
"num_of_frame": nums_frame,
}
return frames, meta
class TestQwenVLProcessor(unittest.TestCase):
"""
Unit tests for Qwen Vision-Language Processor functionality
"""
def setUp(self):
"""
Initialize test case with:
- Mock configuration
- Patched message parsing and video processing methods
- QwenVLProcessor instance with test parameters
"""
config = MagicMock()
config.vision_config.tokens_per_second = 2
self.patcher_parse_image = patch(
"fastdeploy.entrypoints.chat_utils.MultiModalPartParser.parse_image", return_value=mock_pil_image(480, 640)
)
self.patcher_parse_image.start()
self.patcher_parse_video = patch(
"fastdeploy.entrypoints.chat_utils.MultiModalPartParser.parse_video", return_value=b"123"
)
self.patcher_parse_video.start()
self.patcher_read_frames = patch(
"fastdeploy.input.qwen_vl_processor.process.read_frames", return_value=mock_read_frames(480, 640, 5, 2)
)
self.patcher_read_frames.start()
mm_processor_kwargs = {
"video_max_frames": 10,
"video_min_frames": 1,
}
limit_mm_per_prompt = {"image": 1, "video": 1, "audio": 1}
model_name_or_path = "/ModelData/Qwen2.5-VL-7B-Instruct"
self.processor = QwenVLProcessor(
config=config,
model_name_or_path=model_name_or_path,
limit_mm_per_prompt=limit_mm_per_prompt,
mm_processor_kwargs=mm_processor_kwargs,
reasoning_parser_obj=None,
tool_parser_obj=None,
)
def tearDown(self) -> None:
"""Clean up test case by stopping all mock patches"""
self.patcher_read_frames.stop()
self.patcher_parse_image.stop()
self.patcher_parse_video.stop()
def test_process_request(self):
"""
Test processing of Request object with multimodal input
Validates:
1. Token ID lengths match position_ids and token_type_ids shapes
2. Image processing produces expected output dimensions
3. Video processing produces expected output dimensions
4. Correct counts for images (1) and videos (1)
"""
prompt = {
"request_id": "12345",
"messages": [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": "file://demo.jpeg"}},
{"type": "video_url", "video_url": {"url": "file://3_frame_video.mp4"}},
{"type": "text", "text": "Describe image and video."},
],
}
],
}
request = Request.from_dict(prompt)
result = self.processor.process_request(request, 1024 * 100)
self.assertEqual(result.prompt_token_ids_len, result.multimodal_inputs["position_ids"].shape[0])
self.assertEqual(result.prompt_token_ids_len, result.multimodal_inputs["token_type_ids"].shape[0])
self.assertEqual(
result.multimodal_inputs["images"].shape[0],
sum(map(lambda x: x.prod(), result.multimodal_inputs["grid_thw"])),
)
self.assertEqual(
result.multimodal_inputs["image_type_ids"].shape[0], result.multimodal_inputs["grid_thw"][:, 0].sum()
)
self.assertEqual(result.multimodal_inputs["pic_cnt"], 1)
self.assertEqual(result.multimodal_inputs["video_cnt"], 1)
def test_process_request_dict(self):
"""
Test processing of dictionary-format request with multimodal input
Validates:
1. Token ID lengths match position_ids and token_type_ids shapes
2. Image processing produces expected output dimensions
3. Video processing produces expected output dimensions
4. Correct counts for images (1) and videos (1)
"""
num_generated_token_ids = 10
request = {
"request_id": "12345",
"metadata": {
"generated_token_ids": [1] * num_generated_token_ids,
},
"stop": ["stop", "eof"],
"messages": [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": "file://demo.jpeg"}},
{"type": "video_url", "video_url": {"url": "file://3_frame_video.mp4"}},
{"type": "text", "text": "Describe image and video."},
],
}
],
}
result = self.processor.process_request_dict(request, 1024 * 100)
self.assertEqual(result["prompt_token_ids_len"], result["multimodal_inputs"]["position_ids"].shape[0])
self.assertEqual(result["prompt_token_ids_len"], result["multimodal_inputs"]["token_type_ids"].shape[0])
self.assertEqual(
result["multimodal_inputs"]["images"].shape[0],
sum(map(lambda x: x.prod(), result["multimodal_inputs"]["grid_thw"])),
)
self.assertEqual(
result["multimodal_inputs"]["image_type_ids"].shape[0], result["multimodal_inputs"]["grid_thw"][:, 0].sum()
)
self.assertEqual(result["multimodal_inputs"]["pic_cnt"], 1)
self.assertEqual(result["multimodal_inputs"]["video_cnt"], 1)
def test_prompt(self):
"""
Test processing of prompt with image and video placeholders
Validates:
1. Token ID lengths match position_ids and token_type_ids shapes
2. Image processing produces expected output dimensions
3. Video processing produces expected output dimensions
4. Correct counts for images (1) and videos (1)
"""
prompt = {
"request_id": "12345",
"prompt": "<|image@placeholder|><|video@placeholder|>Describe image and video.",
"multimodal_data": {
"image": [mock_pil_image(10, 2100)],
"video": [{"video": b"123", "fps": 5}],
},
}
request = Request.from_dict(prompt)
result = self.processor.process_request(request, 1024 * 100)
self.assertEqual(result.prompt_token_ids_len, result.multimodal_inputs["position_ids"].shape[0])
self.assertEqual(result.prompt_token_ids_len, result.multimodal_inputs["token_type_ids"].shape[0])
self.assertEqual(
result.multimodal_inputs["images"].shape[0],
sum(map(lambda x: x.prod(), result.multimodal_inputs["grid_thw"])),
)
self.assertEqual(
result.multimodal_inputs["image_type_ids"].shape[0], result.multimodal_inputs["grid_thw"][:, 0].sum()
)
self.assertEqual(result.multimodal_inputs["pic_cnt"], 1)
self.assertEqual(result.multimodal_inputs["video_cnt"], 1)
if __name__ == "__main__":
unittest.main()