mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00

* Add Huawei Ascend NPU deploy through PaddleLite CANN * Add NNAdapter interface for paddlelite * Modify Huawei Ascend Cmake * Update way for compiling Huawei Ascend NPU deployment * remove UseLiteBackend in UseCANN * Support compile python whlee * Change names of nnadapter API * Add nnadapter pybind and remove useless API * Support Python deployment on Huawei Ascend NPU * Add models suppor for ascend * Add PPOCR rec reszie for ascend * fix conflict for ascend * Rename CANN to Ascend * Rename CANN to Ascend * Improve ascend * fix ascend bug * improve ascend docs * improve ascend docs * improve ascend docs * Improve Ascend * Improve Ascend * Move ascend python demo * Imporve ascend * Improve ascend * Improve ascend * Improve ascend * Improve ascend * Imporve ascend * Imporve ascend * Improve ascend
946 lines
35 KiB
C++
Executable File
946 lines
35 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/runtime.h"
|
|
|
|
#include "fastdeploy/utils/unique_ptr.h"
|
|
#include "fastdeploy/utils/utils.h"
|
|
|
|
#ifdef ENABLE_ORT_BACKEND
|
|
#include "fastdeploy/backends/ort/ort_backend.h"
|
|
#endif
|
|
|
|
#ifdef ENABLE_TRT_BACKEND
|
|
#include "fastdeploy/backends/tensorrt/trt_backend.h"
|
|
#endif
|
|
|
|
#ifdef ENABLE_PADDLE_BACKEND
|
|
#include "fastdeploy/backends/paddle/paddle_backend.h"
|
|
#endif
|
|
|
|
#ifdef ENABLE_POROS_BACKEND
|
|
#include "fastdeploy/backends/poros/poros_backend.h"
|
|
#endif
|
|
|
|
#ifdef ENABLE_OPENVINO_BACKEND
|
|
#include "fastdeploy/backends/openvino/ov_backend.h"
|
|
#endif
|
|
|
|
#ifdef ENABLE_LITE_BACKEND
|
|
#include "fastdeploy/backends/lite/lite_backend.h"
|
|
#endif
|
|
|
|
#ifdef ENABLE_RKNPU2_BACKEND
|
|
#include "fastdeploy/backends/rknpu/rknpu2/rknpu2_backend.h"
|
|
#endif
|
|
|
|
namespace fastdeploy {
|
|
|
|
std::vector<Backend> GetAvailableBackends() {
|
|
std::vector<Backend> backends;
|
|
#ifdef ENABLE_ORT_BACKEND
|
|
backends.push_back(Backend::ORT);
|
|
#endif
|
|
#ifdef ENABLE_TRT_BACKEND
|
|
backends.push_back(Backend::TRT);
|
|
#endif
|
|
#ifdef ENABLE_PADDLE_BACKEND
|
|
backends.push_back(Backend::PDINFER);
|
|
#endif
|
|
#ifdef ENABLE_POROS_BACKEND
|
|
backends.push_back(Backend::POROS);
|
|
#endif
|
|
#ifdef ENABLE_OPENVINO_BACKEND
|
|
backends.push_back(Backend::OPENVINO);
|
|
#endif
|
|
#ifdef ENABLE_LITE_BACKEND
|
|
backends.push_back(Backend::LITE);
|
|
#endif
|
|
#ifdef ENABLE_RKNPU2_BACKEND
|
|
backends.push_back(Backend::RKNPU2);
|
|
#endif
|
|
return backends;
|
|
}
|
|
|
|
bool IsBackendAvailable(const Backend& backend) {
|
|
std::vector<Backend> backends = GetAvailableBackends();
|
|
for (size_t i = 0; i < backends.size(); ++i) {
|
|
if (backend == backends[i]) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::string Str(const Backend& b) {
|
|
if (b == Backend::ORT) {
|
|
return "Backend::ORT";
|
|
} else if (b == Backend::TRT) {
|
|
return "Backend::TRT";
|
|
} else if (b == Backend::PDINFER) {
|
|
return "Backend::PDINFER";
|
|
} else if (b == Backend::POROS) {
|
|
return "Backend::POROS";
|
|
} else if (b == Backend::RKNPU2) {
|
|
return "Backend::RKNPU2";
|
|
} else if (b == Backend::OPENVINO) {
|
|
return "Backend::OPENVINO";
|
|
} else if (b == Backend::LITE) {
|
|
return "Backend::PDLITE";
|
|
}
|
|
return "UNKNOWN-Backend";
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& out, const Backend& backend) {
|
|
if (backend == Backend::ORT) {
|
|
out << "Backend::ORT";
|
|
} else if (backend == Backend::TRT) {
|
|
out << "Backend::TRT";
|
|
} else if (backend == Backend::PDINFER) {
|
|
out << "Backend::PDINFER";
|
|
} else if (backend == Backend::OPENVINO) {
|
|
out << "Backend::OPENVINO";
|
|
} else if (backend == Backend::RKNPU2) {
|
|
out << "Backend::RKNPU2";
|
|
} else if (backend == Backend::POROS) {
|
|
out << "Backend::POROS";
|
|
} else if (backend == Backend::LITE) {
|
|
out << "Backend::PDLITE";
|
|
} else {
|
|
out << "UNKNOWN-Backend";
|
|
}
|
|
return out;
|
|
}
|
|
|
|
bool CheckModelFormat(const std::string& model_file,
|
|
const ModelFormat& model_format) {
|
|
if (model_format == ModelFormat::PADDLE) {
|
|
if (model_file.size() < 8 ||
|
|
model_file.substr(model_file.size() - 8, 8) != ".pdmodel") {
|
|
FDERROR << "With model format of ModelFormat::PADDLE, the model file "
|
|
"should ends with `.pdmodel`, but now it's "
|
|
<< model_file << std::endl;
|
|
return false;
|
|
}
|
|
} else if (model_format == ModelFormat::ONNX) {
|
|
if (model_file.size() < 5 ||
|
|
model_file.substr(model_file.size() - 5, 5) != ".onnx") {
|
|
FDERROR << "With model format of ModelFormat::ONNX, the model file "
|
|
"should ends with `.onnx`, but now it's "
|
|
<< model_file << std::endl;
|
|
return false;
|
|
}
|
|
} else if (model_format == ModelFormat::RKNN) {
|
|
if (model_file.size() < 5 ||
|
|
model_file.substr(model_file.size() - 5, 5) != ".rknn") {
|
|
FDERROR << "With model format of ModelFormat::RKNN, the model file "
|
|
"should ends with `.rknn`, but now it's "
|
|
<< model_file << std::endl;
|
|
return false;
|
|
}
|
|
} else if (model_format == ModelFormat::TORCHSCRIPT) {
|
|
if (model_file.size() < 3 ||
|
|
model_file.substr(model_file.size() - 3, 3) != ".pt") {
|
|
FDERROR
|
|
<< "With model format of ModelFormat::TORCHSCRIPT, the model file "
|
|
"should ends with `.pt`, but now it's "
|
|
<< model_file << std::endl;
|
|
return false;
|
|
}
|
|
} else {
|
|
FDERROR
|
|
<< "Only support model format with frontend ModelFormat::PADDLE / "
|
|
"ModelFormat::ONNX / ModelFormat::RKNN / ModelFormat::TORCHSCRIPT."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ModelFormat GuessModelFormat(const std::string& model_file) {
|
|
if (model_file.size() > 8 &&
|
|
model_file.substr(model_file.size() - 8, 8) == ".pdmodel") {
|
|
FDINFO << "Model Format: PaddlePaddle." << std::endl;
|
|
return ModelFormat::PADDLE;
|
|
} else if (model_file.size() > 5 &&
|
|
model_file.substr(model_file.size() - 5, 5) == ".onnx") {
|
|
FDINFO << "Model Format: ONNX." << std::endl;
|
|
return ModelFormat::ONNX;
|
|
} else if (model_file.size() > 3 &&
|
|
model_file.substr(model_file.size() - 3, 3) == ".pt") {
|
|
FDINFO << "Model Format: Torchscript." << std::endl;
|
|
return ModelFormat::TORCHSCRIPT;
|
|
} else if (model_file.size() > 5 &&
|
|
model_file.substr(model_file.size() - 5, 5) == ".rknn") {
|
|
FDINFO << "Model Format: RKNN." << std::endl;
|
|
return ModelFormat::RKNN;
|
|
}
|
|
|
|
FDERROR << "Cannot guess which model format you are using, please set "
|
|
"RuntimeOption::model_format manually."
|
|
<< std::endl;
|
|
return ModelFormat::PADDLE;
|
|
}
|
|
|
|
void RuntimeOption::SetModelPath(const std::string& model_path,
|
|
const std::string& params_path,
|
|
const ModelFormat& format) {
|
|
if (format == ModelFormat::PADDLE) {
|
|
model_file = model_path;
|
|
params_file = params_path;
|
|
model_format = ModelFormat::PADDLE;
|
|
} else if (format == ModelFormat::ONNX) {
|
|
model_file = model_path;
|
|
model_format = ModelFormat::ONNX;
|
|
} else if (format == ModelFormat::TORCHSCRIPT) {
|
|
model_file = model_path;
|
|
model_format = ModelFormat::TORCHSCRIPT;
|
|
} else {
|
|
FDASSERT(false,
|
|
"The model format only can be "
|
|
"ModelFormat::PADDLE/ModelFormat::ONNX/ModelFormat::TORCHSCRIPT.");
|
|
}
|
|
}
|
|
|
|
void RuntimeOption::SetModelBuffer(const char * model_buffer,
|
|
size_t model_buffer_size,
|
|
const char * params_buffer,
|
|
size_t params_buffer_size,
|
|
const ModelFormat& format) {
|
|
model_buffer_size_ = model_buffer_size;
|
|
params_buffer_size_ = params_buffer_size;
|
|
model_from_memory_ = true;
|
|
if (format == ModelFormat::PADDLE) {
|
|
model_buffer_ = std::string(model_buffer, model_buffer + model_buffer_size);
|
|
params_buffer_ = std::string(params_buffer, params_buffer + params_buffer_size);
|
|
model_format = ModelFormat::PADDLE;
|
|
} else if (format == ModelFormat::ONNX) {
|
|
model_buffer_ = std::string(model_buffer, model_buffer + model_buffer_size);
|
|
model_format = ModelFormat::ONNX;
|
|
} else if (format == ModelFormat::TORCHSCRIPT) {
|
|
model_buffer_ = std::string(model_buffer, model_buffer + model_buffer_size);
|
|
model_format = ModelFormat::TORCHSCRIPT;
|
|
} else {
|
|
FDASSERT(false,
|
|
"The model format only can be "
|
|
"ModelFormat::PADDLE/ModelFormat::ONNX/ModelFormat::TORCHSCRIPT.");
|
|
}
|
|
}
|
|
|
|
void RuntimeOption::UseGpu(int gpu_id) {
|
|
#ifdef WITH_GPU
|
|
device = Device::GPU;
|
|
device_id = gpu_id;
|
|
#else
|
|
FDWARNING << "The FastDeploy didn't compile with GPU, will force to use CPU."
|
|
<< std::endl;
|
|
device = Device::CPU;
|
|
#endif
|
|
}
|
|
|
|
void RuntimeOption::UseCpu() { device = Device::CPU; }
|
|
|
|
void RuntimeOption::UseRKNPU2(fastdeploy::rknpu2::CpuName rknpu2_name,
|
|
fastdeploy::rknpu2::CoreMask rknpu2_core) {
|
|
rknpu2_cpu_name_ = rknpu2_name;
|
|
rknpu2_core_mask_ = rknpu2_core;
|
|
device = Device::RKNPU;
|
|
}
|
|
|
|
void RuntimeOption::UseTimVX() {
|
|
enable_timvx = true;
|
|
device = Device::TIMVX;
|
|
}
|
|
|
|
void RuntimeOption::UseXpu(int xpu_id,
|
|
int l3_workspace_size,
|
|
bool locked,
|
|
bool autotune,
|
|
const std::string &autotune_file,
|
|
const std::string &precision,
|
|
bool adaptive_seqlen,
|
|
bool enable_multi_stream) {
|
|
enable_xpu = true;
|
|
device_id = xpu_id;
|
|
xpu_l3_workspace_size = l3_workspace_size;
|
|
xpu_locked=locked;
|
|
xpu_autotune=autotune;
|
|
xpu_autotune_file=autotune_file;
|
|
xpu_precision = precision;
|
|
xpu_adaptive_seqlen=adaptive_seqlen;
|
|
xpu_enable_multi_stream=enable_multi_stream;
|
|
device = Device::XPU;
|
|
}
|
|
|
|
void RuntimeOption::UseAscend(){
|
|
enable_ascend = true;
|
|
device = Device::ASCEND;
|
|
}
|
|
|
|
void RuntimeOption::SetExternalStream(void* external_stream) {
|
|
external_stream_ = external_stream;
|
|
}
|
|
|
|
void RuntimeOption::SetCpuThreadNum(int thread_num) {
|
|
FDASSERT(thread_num > 0, "The thread_num must be greater than 0.");
|
|
cpu_thread_num = thread_num;
|
|
}
|
|
|
|
void RuntimeOption::SetOrtGraphOptLevel(int level) {
|
|
std::vector<int> supported_level{-1, 0, 1, 2};
|
|
auto valid_level = std::find(supported_level.begin(), supported_level.end(),
|
|
level) != supported_level.end();
|
|
FDASSERT(valid_level, "The level must be -1, 0, 1, 2.");
|
|
ort_graph_opt_level = level;
|
|
}
|
|
|
|
// use paddle inference backend
|
|
void RuntimeOption::UsePaddleBackend() {
|
|
#ifdef ENABLE_PADDLE_BACKEND
|
|
backend = Backend::PDINFER;
|
|
#else
|
|
FDASSERT(false, "The FastDeploy didn't compile with Paddle Inference.");
|
|
#endif
|
|
}
|
|
|
|
// use onnxruntime backend
|
|
void RuntimeOption::UseOrtBackend() {
|
|
#ifdef ENABLE_ORT_BACKEND
|
|
backend = Backend::ORT;
|
|
#else
|
|
FDASSERT(false, "The FastDeploy didn't compile with OrtBackend.");
|
|
#endif
|
|
}
|
|
|
|
// use poros backend
|
|
void RuntimeOption::UsePorosBackend() {
|
|
#ifdef ENABLE_POROS_BACKEND
|
|
backend = Backend::POROS;
|
|
#else
|
|
FDASSERT(false, "The FastDeploy didn't compile with PorosBackend.");
|
|
#endif
|
|
}
|
|
|
|
void RuntimeOption::UseTrtBackend() {
|
|
#ifdef ENABLE_TRT_BACKEND
|
|
backend = Backend::TRT;
|
|
#else
|
|
FDASSERT(false, "The FastDeploy didn't compile with TrtBackend.");
|
|
#endif
|
|
}
|
|
|
|
void RuntimeOption::UseOpenVINOBackend() {
|
|
#ifdef ENABLE_OPENVINO_BACKEND
|
|
backend = Backend::OPENVINO;
|
|
#else
|
|
FDASSERT(false, "The FastDeploy didn't compile with OpenVINO.");
|
|
#endif
|
|
}
|
|
|
|
void RuntimeOption::UseLiteBackend() {
|
|
#ifdef ENABLE_LITE_BACKEND
|
|
backend = Backend::LITE;
|
|
#else
|
|
FDASSERT(false, "The FastDeploy didn't compile with Paddle Lite.");
|
|
#endif
|
|
}
|
|
|
|
void RuntimeOption::SetPaddleMKLDNN(bool pd_mkldnn) {
|
|
pd_enable_mkldnn = pd_mkldnn;
|
|
}
|
|
|
|
void RuntimeOption::DeletePaddleBackendPass(const std::string& pass_name) {
|
|
pd_delete_pass_names.push_back(pass_name);
|
|
}
|
|
void RuntimeOption::EnablePaddleLogInfo() { pd_enable_log_info = true; }
|
|
|
|
void RuntimeOption::DisablePaddleLogInfo() { pd_enable_log_info = false; }
|
|
|
|
void RuntimeOption::EnablePaddleToTrt() {
|
|
FDASSERT(backend == Backend::TRT,
|
|
"Should call UseTrtBackend() before call EnablePaddleToTrt().");
|
|
#ifdef ENABLE_PADDLE_BACKEND
|
|
FDINFO << "While using TrtBackend with EnablePaddleToTrt, FastDeploy will "
|
|
"change to use Paddle Inference Backend."
|
|
<< std::endl;
|
|
backend = Backend::PDINFER;
|
|
pd_enable_trt = true;
|
|
#else
|
|
FDASSERT(false, "While using TrtBackend with EnablePaddleToTrt, require the "
|
|
"FastDeploy is compiled with Paddle Inference Backend, "
|
|
"please rebuild your FastDeploy.");
|
|
#endif
|
|
}
|
|
|
|
void RuntimeOption::SetPaddleMKLDNNCacheSize(int size) {
|
|
FDASSERT(size > 0, "Parameter size must greater than 0.");
|
|
pd_mkldnn_cache_size = size;
|
|
}
|
|
|
|
void RuntimeOption::SetOpenVINODevice(const std::string& name) {
|
|
openvino_device = name;
|
|
}
|
|
|
|
void RuntimeOption::EnableLiteFP16() { lite_enable_fp16 = true; }
|
|
|
|
void RuntimeOption::DisableLiteFP16() { lite_enable_fp16 = false; }
|
|
void RuntimeOption::EnableLiteInt8() { lite_enable_int8 = true; }
|
|
|
|
void RuntimeOption::DisableLiteInt8() { lite_enable_int8 = false; }
|
|
void RuntimeOption::SetLitePowerMode(LitePowerMode mode) {
|
|
lite_power_mode = mode;
|
|
}
|
|
|
|
void RuntimeOption::SetLiteOptimizedModelDir(
|
|
const std::string& optimized_model_dir) {
|
|
lite_optimized_model_dir = optimized_model_dir;
|
|
}
|
|
|
|
void RuntimeOption::SetLiteSubgraphPartitionPath(
|
|
const std::string& nnadapter_subgraph_partition_config_path) {
|
|
lite_nnadapter_subgraph_partition_config_path =
|
|
nnadapter_subgraph_partition_config_path;
|
|
}
|
|
|
|
void RuntimeOption::SetLiteSubgraphPartitionConfigBuffer(
|
|
const std::string& nnadapter_subgraph_partition_config_buffer){
|
|
lite_nnadapter_subgraph_partition_config_buffer = nnadapter_subgraph_partition_config_buffer;
|
|
}
|
|
|
|
void RuntimeOption::SetLiteDeviceNames(const std::vector<std::string>& nnadapter_device_names){
|
|
lite_nnadapter_device_names = nnadapter_device_names;
|
|
}
|
|
|
|
void RuntimeOption::SetLiteContextProperties(const std::string& nnadapter_context_properties){
|
|
lite_nnadapter_context_properties = nnadapter_context_properties;
|
|
}
|
|
|
|
void RuntimeOption::SetLiteModelCacheDir(const std::string& nnadapter_model_cache_dir){
|
|
lite_nnadapter_model_cache_dir = nnadapter_model_cache_dir;
|
|
}
|
|
|
|
|
|
void RuntimeOption::SetLiteDynamicShapeInfo(
|
|
const std::map<std::string, std::vector<std::vector<int64_t>>>&
|
|
nnadapter_dynamic_shape_info){
|
|
lite_nnadapter_dynamic_shape_info = nnadapter_dynamic_shape_info;
|
|
}
|
|
|
|
void RuntimeOption::SetLiteMixedPrecisionQuantizationConfigPath(
|
|
const std::string& nnadapter_mixed_precision_quantization_config_path){
|
|
lite_nnadapter_mixed_precision_quantization_config_path = nnadapter_mixed_precision_quantization_config_path;
|
|
}
|
|
|
|
|
|
void RuntimeOption::SetTrtInputShape(const std::string& input_name,
|
|
const std::vector<int32_t>& min_shape,
|
|
const std::vector<int32_t>& opt_shape,
|
|
const std::vector<int32_t>& max_shape) {
|
|
trt_min_shape[input_name].clear();
|
|
trt_max_shape[input_name].clear();
|
|
trt_opt_shape[input_name].clear();
|
|
trt_min_shape[input_name].assign(min_shape.begin(), min_shape.end());
|
|
if (opt_shape.size() == 0) {
|
|
trt_opt_shape[input_name].assign(min_shape.begin(), min_shape.end());
|
|
} else {
|
|
trt_opt_shape[input_name].assign(opt_shape.begin(), opt_shape.end());
|
|
}
|
|
if (max_shape.size() == 0) {
|
|
trt_max_shape[input_name].assign(min_shape.begin(), min_shape.end());
|
|
} else {
|
|
trt_max_shape[input_name].assign(max_shape.begin(), max_shape.end());
|
|
}
|
|
}
|
|
|
|
void RuntimeOption::SetTrtMaxWorkspaceSize(size_t max_workspace_size) {
|
|
trt_max_workspace_size = max_workspace_size;
|
|
}
|
|
void RuntimeOption::SetTrtMaxBatchSize(size_t max_batch_size) {
|
|
trt_max_batch_size = max_batch_size;
|
|
}
|
|
|
|
void RuntimeOption::EnableTrtFP16() { trt_enable_fp16 = true; }
|
|
|
|
void RuntimeOption::DisableTrtFP16() { trt_enable_fp16 = false; }
|
|
|
|
void RuntimeOption::EnablePinnedMemory() { enable_pinned_memory = true; }
|
|
|
|
void RuntimeOption::DisablePinnedMemory() { enable_pinned_memory = false; }
|
|
|
|
void RuntimeOption::SetTrtCacheFile(const std::string& cache_file_path) {
|
|
trt_serialize_file = cache_file_path;
|
|
}
|
|
|
|
void RuntimeOption::SetOpenVINOStreams(int num_streams) {
|
|
ov_num_streams = num_streams;
|
|
}
|
|
|
|
bool Runtime::Compile(std::vector<std::vector<FDTensor>>& prewarm_tensors,
|
|
const RuntimeOption& _option) {
|
|
#ifdef ENABLE_POROS_BACKEND
|
|
option = _option;
|
|
auto poros_option = PorosBackendOption();
|
|
poros_option.use_gpu = (option.device == Device::GPU) ? true : false;
|
|
poros_option.gpu_id = option.device_id;
|
|
poros_option.long_to_int = option.long_to_int;
|
|
poros_option.use_nvidia_tf32 = option.use_nvidia_tf32;
|
|
poros_option.unconst_ops_thres = option.unconst_ops_thres;
|
|
poros_option.poros_file = option.poros_file;
|
|
poros_option.is_dynamic = option.is_dynamic;
|
|
poros_option.enable_fp16 = option.trt_enable_fp16;
|
|
poros_option.max_batch_size = option.trt_max_batch_size;
|
|
poros_option.max_workspace_size = option.trt_max_workspace_size;
|
|
FDASSERT(
|
|
option.model_format == ModelFormat::TORCHSCRIPT,
|
|
"PorosBackend only support model format of ModelFormat::TORCHSCRIPT.");
|
|
backend_ = utils::make_unique<PorosBackend>();
|
|
auto casted_backend = dynamic_cast<PorosBackend*>(backend_.get());
|
|
FDASSERT(
|
|
casted_backend->Compile(option.model_file, prewarm_tensors, poros_option),
|
|
"Load model from Torchscript failed while initliazing PorosBackend.");
|
|
#else
|
|
FDASSERT(false, "PorosBackend is not available, please compiled with "
|
|
"ENABLE_POROS_BACKEND=ON.");
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
void RuntimeOption::EnablePaddleTrtCollectShape() { pd_collect_shape = true; }
|
|
|
|
void RuntimeOption::DisablePaddleTrtCollectShape() { pd_collect_shape = false; }
|
|
|
|
void RuntimeOption::DisablePaddleTrtOPs(const std::vector<std::string>& ops) {
|
|
trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
|
|
}
|
|
|
|
void RuntimeOption::UseIpu(int device_num, int micro_batch_size,
|
|
bool enable_pipelining, int batches_per_step) {
|
|
#ifdef WITH_IPU
|
|
device = Device::IPU;
|
|
ipu_device_num = device_num;
|
|
ipu_micro_batch_size = micro_batch_size;
|
|
ipu_enable_pipelining = enable_pipelining;
|
|
ipu_batches_per_step = batches_per_step;
|
|
#else
|
|
FDWARNING << "The FastDeploy didn't compile with IPU, will force to use CPU."
|
|
<< std::endl;
|
|
device = Device::CPU;
|
|
#endif
|
|
}
|
|
|
|
void RuntimeOption::SetIpuConfig(bool enable_fp16, int replica_num,
|
|
float available_memory_proportion,
|
|
bool enable_half_partial) {
|
|
ipu_enable_fp16 = enable_fp16;
|
|
ipu_replica_num = replica_num;
|
|
ipu_available_memory_proportion = available_memory_proportion;
|
|
ipu_enable_half_partial = enable_half_partial;
|
|
}
|
|
|
|
bool Runtime::Init(const RuntimeOption& _option) {
|
|
option = _option;
|
|
if (option.model_format == ModelFormat::AUTOREC) {
|
|
option.model_format = GuessModelFormat(_option.model_file);
|
|
}
|
|
if (option.backend == Backend::UNKNOWN) {
|
|
if (IsBackendAvailable(Backend::ORT)) {
|
|
option.backend = Backend::ORT;
|
|
} else if (IsBackendAvailable(Backend::PDINFER)) {
|
|
option.backend = Backend::PDINFER;
|
|
} else if (IsBackendAvailable(Backend::POROS)) {
|
|
option.backend = Backend::POROS;
|
|
} else if (IsBackendAvailable(Backend::OPENVINO)) {
|
|
option.backend = Backend::OPENVINO;
|
|
} else if (IsBackendAvailable(Backend::RKNPU2)) {
|
|
option.backend = Backend::RKNPU2;
|
|
} else {
|
|
FDERROR << "Please define backend in RuntimeOption, current it's "
|
|
"Backend::UNKNOWN."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (option.backend == Backend::ORT) {
|
|
FDASSERT(option.device == Device::CPU || option.device == Device::GPU,
|
|
"Backend::ORT only supports Device::CPU/Device::GPU.");
|
|
CreateOrtBackend();
|
|
FDINFO << "Runtime initialized with Backend::ORT in " << Str(option.device)
|
|
<< "." << std::endl;
|
|
} else if (option.backend == Backend::TRT) {
|
|
FDASSERT(option.device == Device::GPU,
|
|
"Backend::TRT only supports Device::GPU.");
|
|
CreateTrtBackend();
|
|
FDINFO << "Runtime initialized with Backend::TRT in " << Str(option.device)
|
|
<< "." << std::endl;
|
|
} else if (option.backend == Backend::PDINFER) {
|
|
FDASSERT(
|
|
option.device == Device::CPU || option.device == Device::GPU ||
|
|
option.device == Device::IPU,
|
|
"Backend::PDINFER only supports Device::CPU/Device::GPU/Device::IPU.");
|
|
FDASSERT(
|
|
option.model_format == ModelFormat::PADDLE,
|
|
"Backend::PDINFER only supports model format of ModelFormat::PADDLE.");
|
|
CreatePaddleBackend();
|
|
FDINFO << "Runtime initialized with Backend::PDINFER in "
|
|
<< Str(option.device) << "." << std::endl;
|
|
} else if (option.backend == Backend::POROS) {
|
|
FDASSERT(option.device == Device::CPU || option.device == Device::GPU,
|
|
"Backend::POROS only supports Device::CPU/Device::GPU.");
|
|
FDASSERT(option.model_format == ModelFormat::TORCHSCRIPT,
|
|
"Backend::POROS only supports model format of "
|
|
"ModelFormat::TORCHSCRIPT.");
|
|
FDINFO << "Runtime initialized with Backend::POROS in "
|
|
<< Str(option.device) << "." << std::endl;
|
|
return true;
|
|
} else if (option.backend == Backend::OPENVINO) {
|
|
FDASSERT(option.device == Device::CPU,
|
|
"Backend::OPENVINO only supports Device::CPU");
|
|
CreateOpenVINOBackend();
|
|
FDINFO << "Runtime initialized with Backend::OPENVINO in "
|
|
<< Str(option.device) << "." << std::endl;
|
|
} else if (option.backend == Backend::LITE) {
|
|
FDASSERT(option.device == Device::CPU || option.device == Device::TIMVX || option.device == Device::XPU || option.device == Device::ASCEND,
|
|
"Backend::LITE only supports Device::CPU/Device::TIMVX/Device::XPU.");
|
|
CreateLiteBackend();
|
|
FDINFO << "Runtime initialized with Backend::LITE in " << Str(option.device)
|
|
<< "." << std::endl;
|
|
} else if (option.backend == Backend::RKNPU2) {
|
|
FDASSERT(option.device == Device::RKNPU,
|
|
"Backend::RKNPU2 only supports Device::RKNPU2");
|
|
CreateRKNPU2Backend();
|
|
|
|
FDINFO << "Runtime initialized with Backend::RKNPU2 in "
|
|
<< Str(option.device) << "." << std::endl;
|
|
} else {
|
|
FDERROR << "Runtime only support "
|
|
"Backend::ORT/Backend::TRT/Backend::PDINFER/Backend::POROS as "
|
|
"backend now."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
TensorInfo Runtime::GetInputInfo(int index) {
|
|
return backend_->GetInputInfo(index);
|
|
}
|
|
|
|
TensorInfo Runtime::GetOutputInfo(int index) {
|
|
return backend_->GetOutputInfo(index);
|
|
}
|
|
|
|
std::vector<TensorInfo> Runtime::GetInputInfos() {
|
|
return backend_->GetInputInfos();
|
|
}
|
|
|
|
std::vector<TensorInfo> Runtime::GetOutputInfos() {
|
|
return backend_->GetOutputInfos();
|
|
}
|
|
|
|
bool Runtime::Infer(std::vector<FDTensor>& input_tensors,
|
|
std::vector<FDTensor>* output_tensors) {
|
|
for (auto& tensor : input_tensors) {
|
|
FDASSERT(tensor.device_id < 0 || tensor.device_id == option.device_id,
|
|
"Device id of input tensor(%d) and runtime(%d) are not same.",
|
|
tensor.device_id, option.device_id);
|
|
}
|
|
return backend_->Infer(input_tensors, output_tensors);
|
|
}
|
|
|
|
bool Runtime::Infer() {
|
|
return backend_->Infer(input_tensors_, &output_tensors_, false);
|
|
}
|
|
|
|
void Runtime::BindInputTensor(const std::string& name, FDTensor& input) {
|
|
bool is_exist = false;
|
|
for (auto& t : input_tensors_) {
|
|
if (t.name == name) {
|
|
is_exist = true;
|
|
t.SetExternalData(input.shape, input.dtype, input.MutableData(),
|
|
input.device, input.device_id);
|
|
break;
|
|
}
|
|
}
|
|
if (!is_exist) {
|
|
FDTensor new_tensor(name);
|
|
new_tensor.SetExternalData(input.shape, input.dtype, input.MutableData(),
|
|
input.device, input.device_id);
|
|
input_tensors_.emplace_back(std::move(new_tensor));
|
|
}
|
|
}
|
|
|
|
FDTensor* Runtime::GetOutputTensor(const std::string& name) {
|
|
for (auto& t : output_tensors_) {
|
|
if (t.name == name) {
|
|
return &t;
|
|
}
|
|
}
|
|
FDWARNING << "The output name [" << name << "] don't exist." << std::endl;
|
|
return nullptr;
|
|
}
|
|
|
|
void Runtime::CreatePaddleBackend() {
|
|
#ifdef ENABLE_PADDLE_BACKEND
|
|
auto pd_option = PaddleBackendOption();
|
|
pd_option.model_file = option.model_file;
|
|
pd_option.params_file = option.params_file;
|
|
pd_option.enable_mkldnn = option.pd_enable_mkldnn;
|
|
pd_option.enable_log_info = option.pd_enable_log_info;
|
|
pd_option.mkldnn_cache_size = option.pd_mkldnn_cache_size;
|
|
pd_option.use_gpu = (option.device == Device::GPU) ? true : false;
|
|
pd_option.use_ipu = (option.device == Device::IPU) ? true : false;
|
|
pd_option.gpu_id = option.device_id;
|
|
pd_option.delete_pass_names = option.pd_delete_pass_names;
|
|
pd_option.cpu_thread_num = option.cpu_thread_num;
|
|
pd_option.enable_pinned_memory = option.enable_pinned_memory;
|
|
pd_option.external_stream_ = option.external_stream_;
|
|
pd_option.model_from_memory_ = option.model_from_memory_;
|
|
if (pd_option.model_from_memory_) {
|
|
pd_option.model_buffer_ = option.model_buffer_;
|
|
pd_option.params_buffer_ = option.params_buffer_;
|
|
pd_option.model_buffer_size_ = option.model_buffer_size_;
|
|
pd_option.params_buffer_size_ = option.params_buffer_size_;
|
|
}
|
|
#ifdef ENABLE_TRT_BACKEND
|
|
if (pd_option.use_gpu && option.pd_enable_trt) {
|
|
pd_option.enable_trt = true;
|
|
pd_option.collect_shape = option.pd_collect_shape;
|
|
auto trt_option = TrtBackendOption();
|
|
trt_option.gpu_id = option.device_id;
|
|
trt_option.enable_fp16 = option.trt_enable_fp16;
|
|
trt_option.max_batch_size = option.trt_max_batch_size;
|
|
trt_option.max_workspace_size = option.trt_max_workspace_size;
|
|
trt_option.max_shape = option.trt_max_shape;
|
|
trt_option.min_shape = option.trt_min_shape;
|
|
trt_option.opt_shape = option.trt_opt_shape;
|
|
trt_option.serialize_file = option.trt_serialize_file;
|
|
trt_option.enable_pinned_memory = option.enable_pinned_memory;
|
|
pd_option.trt_option = trt_option;
|
|
pd_option.trt_disabled_ops_ = option.trt_disabled_ops_;
|
|
}
|
|
#endif
|
|
#ifdef WITH_IPU
|
|
if (pd_option.use_ipu) {
|
|
auto ipu_option = IpuOption();
|
|
ipu_option.ipu_device_num = option.ipu_device_num;
|
|
ipu_option.ipu_micro_batch_size = option.ipu_micro_batch_size;
|
|
ipu_option.ipu_enable_pipelining = option.ipu_enable_pipelining;
|
|
ipu_option.ipu_batches_per_step = option.ipu_batches_per_step;
|
|
ipu_option.ipu_enable_fp16 = option.ipu_enable_fp16;
|
|
ipu_option.ipu_replica_num = option.ipu_replica_num;
|
|
ipu_option.ipu_available_memory_proportion =
|
|
option.ipu_available_memory_proportion;
|
|
ipu_option.ipu_enable_half_partial = option.ipu_enable_half_partial;
|
|
pd_option.ipu_option = ipu_option;
|
|
}
|
|
#endif
|
|
FDASSERT(option.model_format == ModelFormat::PADDLE,
|
|
"PaddleBackend only support model format of ModelFormat::PADDLE.");
|
|
backend_ = utils::make_unique<PaddleBackend>();
|
|
auto casted_backend = dynamic_cast<PaddleBackend*>(backend_.get());
|
|
if (pd_option.model_from_memory_) {
|
|
FDASSERT(casted_backend->InitFromPaddle(option.model_buffer_, option.params_buffer_,
|
|
pd_option),
|
|
"Load model from Paddle failed while initliazing PaddleBackend.");
|
|
} else {
|
|
FDASSERT(casted_backend->InitFromPaddle(option.model_file, option.params_file,
|
|
pd_option),
|
|
"Load model from Paddle failed while initliazing PaddleBackend.");
|
|
}
|
|
#else
|
|
FDASSERT(false, "PaddleBackend is not available, please compiled with "
|
|
"ENABLE_PADDLE_BACKEND=ON.");
|
|
#endif
|
|
}
|
|
|
|
void Runtime::CreateOpenVINOBackend() {
|
|
#ifdef ENABLE_OPENVINO_BACKEND
|
|
auto ov_option = OpenVINOBackendOption();
|
|
ov_option.cpu_thread_num = option.cpu_thread_num;
|
|
ov_option.device = option.openvino_device;
|
|
ov_option.shape_infos = option.ov_shape_infos;
|
|
ov_option.num_streams = option.ov_num_streams;
|
|
for (const auto& op : option.ov_cpu_operators) {
|
|
ov_option.cpu_operators.insert(op);
|
|
}
|
|
FDASSERT(option.model_format == ModelFormat::PADDLE ||
|
|
option.model_format == ModelFormat::ONNX,
|
|
"OpenVINOBackend only support model format of ModelFormat::PADDLE / "
|
|
"ModelFormat::ONNX.");
|
|
backend_ = utils::make_unique<OpenVINOBackend>();
|
|
auto casted_backend = dynamic_cast<OpenVINOBackend*>(backend_.get());
|
|
|
|
if (option.model_format == ModelFormat::ONNX) {
|
|
FDASSERT(casted_backend->InitFromOnnx(option.model_file, ov_option),
|
|
"Load model from ONNX failed while initliazing OrtBackend.");
|
|
} else {
|
|
FDASSERT(casted_backend->InitFromPaddle(option.model_file,
|
|
option.params_file, ov_option),
|
|
"Load model from Paddle failed while initliazing OrtBackend.");
|
|
}
|
|
#else
|
|
FDASSERT(false, "OpenVINOBackend is not available, please compiled with "
|
|
"ENABLE_OPENVINO_BACKEND=ON.");
|
|
#endif
|
|
}
|
|
|
|
void Runtime::CreateOrtBackend() {
|
|
#ifdef ENABLE_ORT_BACKEND
|
|
auto ort_option = OrtBackendOption();
|
|
ort_option.graph_optimization_level = option.ort_graph_opt_level;
|
|
ort_option.intra_op_num_threads = option.cpu_thread_num;
|
|
ort_option.inter_op_num_threads = option.ort_inter_op_num_threads;
|
|
ort_option.execution_mode = option.ort_execution_mode;
|
|
ort_option.use_gpu = (option.device == Device::GPU) ? true : false;
|
|
ort_option.gpu_id = option.device_id;
|
|
ort_option.external_stream_ = option.external_stream_;
|
|
|
|
FDASSERT(option.model_format == ModelFormat::PADDLE ||
|
|
option.model_format == ModelFormat::ONNX,
|
|
"OrtBackend only support model format of ModelFormat::PADDLE / "
|
|
"ModelFormat::ONNX.");
|
|
backend_ = utils::make_unique<OrtBackend>();
|
|
auto casted_backend = dynamic_cast<OrtBackend*>(backend_.get());
|
|
if (option.model_format == ModelFormat::ONNX) {
|
|
FDASSERT(casted_backend->InitFromOnnx(option.model_file, ort_option),
|
|
"Load model from ONNX failed while initliazing OrtBackend.");
|
|
} else {
|
|
FDASSERT(casted_backend->InitFromPaddle(option.model_file,
|
|
option.params_file, ort_option),
|
|
"Load model from Paddle failed while initliazing OrtBackend.");
|
|
}
|
|
#else
|
|
FDASSERT(false, "OrtBackend is not available, please compiled with "
|
|
"ENABLE_ORT_BACKEND=ON.");
|
|
#endif
|
|
}
|
|
|
|
void Runtime::CreateTrtBackend() {
|
|
#ifdef ENABLE_TRT_BACKEND
|
|
auto trt_option = TrtBackendOption();
|
|
trt_option.model_file = option.model_file;
|
|
trt_option.params_file = option.params_file;
|
|
trt_option.model_format = option.model_format;
|
|
trt_option.gpu_id = option.device_id;
|
|
trt_option.enable_fp16 = option.trt_enable_fp16;
|
|
trt_option.enable_int8 = option.trt_enable_int8;
|
|
trt_option.max_batch_size = option.trt_max_batch_size;
|
|
trt_option.max_workspace_size = option.trt_max_workspace_size;
|
|
trt_option.max_shape = option.trt_max_shape;
|
|
trt_option.min_shape = option.trt_min_shape;
|
|
trt_option.opt_shape = option.trt_opt_shape;
|
|
trt_option.serialize_file = option.trt_serialize_file;
|
|
trt_option.enable_pinned_memory = option.enable_pinned_memory;
|
|
trt_option.external_stream_ = option.external_stream_;
|
|
|
|
FDASSERT(option.model_format == ModelFormat::PADDLE ||
|
|
option.model_format == ModelFormat::ONNX,
|
|
"TrtBackend only support model format of ModelFormat::PADDLE / "
|
|
"ModelFormat::ONNX.");
|
|
backend_ = utils::make_unique<TrtBackend>();
|
|
auto casted_backend = dynamic_cast<TrtBackend*>(backend_.get());
|
|
if (option.model_format == ModelFormat::ONNX) {
|
|
FDASSERT(casted_backend->InitFromOnnx(option.model_file, trt_option),
|
|
"Load model from ONNX failed while initliazing TrtBackend.");
|
|
} else {
|
|
FDASSERT(casted_backend->InitFromPaddle(option.model_file,
|
|
option.params_file, trt_option),
|
|
"Load model from Paddle failed while initliazing TrtBackend.");
|
|
}
|
|
#else
|
|
FDASSERT(false, "TrtBackend is not available, please compiled with "
|
|
"ENABLE_TRT_BACKEND=ON.");
|
|
#endif
|
|
}
|
|
|
|
void Runtime::CreateLiteBackend() {
|
|
#ifdef ENABLE_LITE_BACKEND
|
|
auto lite_option = LiteBackendOption();
|
|
lite_option.threads = option.cpu_thread_num;
|
|
lite_option.enable_int8 = option.lite_enable_int8;
|
|
lite_option.enable_fp16 = option.lite_enable_fp16;
|
|
lite_option.power_mode = static_cast<int>(option.lite_power_mode);
|
|
lite_option.optimized_model_dir = option.lite_optimized_model_dir;
|
|
lite_option.nnadapter_subgraph_partition_config_path = option.lite_nnadapter_subgraph_partition_config_path;
|
|
lite_option.nnadapter_subgraph_partition_config_buffer = option.lite_nnadapter_subgraph_partition_config_buffer;
|
|
lite_option.nnadapter_device_names = option.lite_nnadapter_device_names;
|
|
lite_option.nnadapter_context_properties = option.lite_nnadapter_context_properties;
|
|
lite_option.nnadapter_model_cache_dir = option.lite_nnadapter_model_cache_dir;
|
|
lite_option.nnadapter_dynamic_shape_info = option.lite_nnadapter_dynamic_shape_info;
|
|
lite_option.nnadapter_mixed_precision_quantization_config_path = option.lite_nnadapter_mixed_precision_quantization_config_path;
|
|
lite_option.enable_timvx = option.enable_timvx;
|
|
lite_option.enable_ascend = option.enable_ascend;
|
|
lite_option.enable_xpu = option.enable_xpu;
|
|
lite_option.device_id = option.device_id;
|
|
lite_option.xpu_l3_workspace_size = option.xpu_l3_workspace_size;
|
|
lite_option.xpu_locked = option.xpu_locked;
|
|
lite_option.xpu_autotune = option.xpu_autotune;
|
|
lite_option.xpu_autotune_file = option.xpu_autotune_file;
|
|
lite_option.xpu_precision = option.xpu_precision;
|
|
lite_option.xpu_adaptive_seqlen = option.xpu_adaptive_seqlen;
|
|
lite_option.xpu_enable_multi_stream = option.xpu_enable_multi_stream;
|
|
|
|
FDASSERT(option.model_format == ModelFormat::PADDLE,
|
|
"LiteBackend only support model format of ModelFormat::PADDLE");
|
|
backend_ = utils::make_unique<LiteBackend>();
|
|
auto casted_backend = dynamic_cast<LiteBackend*>(backend_.get());
|
|
FDASSERT(casted_backend->InitFromPaddle(option.model_file, option.params_file,
|
|
lite_option),
|
|
"Load model from nb file failed while initializing LiteBackend.");
|
|
#else
|
|
FDASSERT(false, "LiteBackend is not available, please compiled with "
|
|
"ENABLE_LITE_BACKEND=ON.");
|
|
#endif
|
|
}
|
|
|
|
void Runtime::CreateRKNPU2Backend() {
|
|
#ifdef ENABLE_RKNPU2_BACKEND
|
|
auto rknpu2_option = RKNPU2BackendOption();
|
|
rknpu2_option.cpu_name = option.rknpu2_cpu_name_;
|
|
rknpu2_option.core_mask = option.rknpu2_core_mask_;
|
|
FDASSERT(option.model_format == ModelFormat::RKNN,
|
|
"RKNPU2Backend only support model format of ModelFormat::RKNN");
|
|
backend_ = utils::make_unique<RKNPU2Backend>();
|
|
auto casted_backend = dynamic_cast<RKNPU2Backend*>(backend_.get());
|
|
FDASSERT(casted_backend->InitFromRKNN(option.model_file, rknpu2_option),
|
|
"Load model from nb file failed while initializing LiteBackend.");
|
|
#else
|
|
FDASSERT(false, "RKNPU2Backend is not available, please compiled with "
|
|
"ENABLE_RKNPU2_BACKEND=ON.");
|
|
#endif
|
|
}
|
|
|
|
Runtime* Runtime::Clone(void* stream, int device_id) {
|
|
Runtime* runtime = new Runtime();
|
|
if (option.backend != Backend::OPENVINO &&
|
|
option.backend != Backend::PDINFER && option.backend != Backend::TRT) {
|
|
runtime->Init(option);
|
|
FDWARNING << "Only OpenVINO/Paddle Inference/TensorRT support \
|
|
clone engine to reduce CPU/GPU memory usage now. For "
|
|
<< option.backend
|
|
<< ", FastDeploy will create a new engine which \
|
|
will not share memory with the current runtime."
|
|
<< std::endl;
|
|
return runtime;
|
|
}
|
|
FDINFO << "Runtime Clone with Backend:: " << Str(option.backend) << " in "
|
|
<< Str(option.device) << "." << std::endl;
|
|
runtime->option = option;
|
|
runtime->backend_ = backend_->Clone(stream, device_id);
|
|
return runtime;
|
|
}
|
|
|
|
} // namespace fastdeploy
|