Files
FastDeploy/fastdeploy/function/elementwise_base.h
Jack Zhou d95094cfe5 [Diffusion] Add C++ dpm solver (#714)
* Add BetaForAlphaBar, ConvertModelOutput, SetTimesteps, and constructor for DPMSolverMultistepScheduler

* tmp

* Add DPMSolverFirstOrderUpdate

* Add ScaleModelInput

* Add MultiStepDPMSolverSecondOrderUpdate

* add MultiStepDPMSolverThirdOrderUpdate

* Add Step

* Add FASTDEPLOY_DECL

* Add AddNoise

* Fix operator

* update

* Fix DPMSolverMultistepScheduler

* Upgrade Slice

* Fix DPMSolverFirstOrderUpdate

* remove FASTDEPLOY_DECL

* Add config for dpm solver
2022-11-30 13:41:22 +08:00

266 lines
11 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include "fastdeploy/core/fd_tensor.h"
#include "fastdeploy/function/eigen.h"
namespace fastdeploy {
namespace function {
#define DEFINE_ELEMENTWISE_OP(name) \
template <typename T> struct name##RawKernel { \
void operator()(const FDTensor& x, const FDTensor& y, int axis, \
FDTensor* out) { \
if (x.Shape() == y.Shape()) { \
SameDimsElementwiseCompute<SameDims##name##Functor<T>>()(x, y, out); \
} else { \
auto x_dims = x.Shape(); \
auto y_dims = y.Shape(); \
if (x_dims.size() >= y_dims.size()) { \
ElementwiseCompute<name##Functor<T>, T>(x, y, axis, \
name##Functor<T>(), out); \
} else { \
ElementwiseCompute<Inverse##name##Functor<T>, T>( \
x, y, axis, Inverse##name##Functor<T>(), out); \
} \
} \
} \
}
inline void GetMidDims(const std::vector<int64_t>& x_dims,
const std::vector<int64_t>& y_dims, const int axis,
int* pre, int* n, int* post,
int* is_run_common_broadcast) {
*pre = 1;
*n = 1;
*post = 1;
*is_run_common_broadcast = 0;
for (int i = 0; i < axis; ++i) {
(*pre) *= x_dims[i];
}
for (int i = 0; i < y_dims.size(); ++i) {
if (x_dims[i + axis] != y_dims[i]) {
FDASSERT(y_dims[i] == 1 || x_dims[i + axis] == 1,
"Broadcast dimension mismatch. Operands "
"could not be broadcast together with the shape of "
"X = [%s] and the shape of Y = [%s]. Received [%d] "
"in X is not equal to [%d] in Y.",
Str(x_dims).c_str(), Str(y_dims).c_str(), x_dims[i + axis],
y_dims[i]);
*is_run_common_broadcast = 1;
return;
}
(*n) *= y_dims[i];
}
for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
(*post) *= x_dims[i];
}
}
inline std::vector<int64_t>
TrimTrailingSingularDims(const std::vector<int64_t>& dims) {
// Remove trailing dimensions of size 1 for y
auto actual_dims_size = dims.size();
for (; actual_dims_size != 0; --actual_dims_size) {
if (dims[actual_dims_size - 1] != 1)
break;
}
if (actual_dims_size == dims.size())
return dims;
std::vector<int64_t> trim_dims;
trim_dims.resize(actual_dims_size);
for (int i = 0; i < actual_dims_size; ++i) {
trim_dims[i] = dims[i];
}
return trim_dims;
}
inline int GetElementwiseIndex(const int64_t* x_dims_array, const int max_dim,
const int64_t* index_array) {
int index_ = 0;
for (int i = 0; i < max_dim; i++) {
if (x_dims_array[i] > 1) {
index_ = index_ * x_dims_array[i] + index_array[i];
}
}
return index_;
}
inline void UpdateElementwiseIndexArray(const int64_t* out_dims_array,
const int max_dim,
int64_t* index_array) {
for (int i = max_dim - 1; i >= 0; --i) {
++index_array[i];
if (index_array[i] >= out_dims_array[i]) {
index_array[i] -= out_dims_array[i];
} else {
break;
}
}
}
inline void GetBroadcastDimsArrays(const std::vector<int64_t>& x_dims,
const std::vector<int64_t>& y_dims,
int64_t* x_dims_array, int64_t* y_dims_array,
int64_t* out_dims_array, const int max_dim,
const int axis) {
FDASSERT(axis >= 0,
"Axis should be great than or equal to 0, but received axis is %d.",
axis);
FDASSERT(axis < max_dim,
"Axis should be less than %d, but received axis is %d.", max_dim,
axis);
if (x_dims.size() > y_dims.size()) {
std::fill(y_dims_array, y_dims_array + axis, 1);
if (axis + y_dims.size() < max_dim) {
std::fill(y_dims_array + axis + y_dims.size(), y_dims_array + max_dim, 1);
}
std::copy(x_dims.data(), x_dims.data() + x_dims.size(), x_dims_array);
std::copy(y_dims.data(), y_dims.data() + y_dims.size(),
y_dims_array + axis);
} else {
std::fill(x_dims_array, x_dims_array + axis, 1);
if (axis + x_dims.size() < max_dim) {
std::fill(x_dims_array + axis + x_dims.size(), x_dims_array + max_dim, 1);
}
std::copy(x_dims.data(), x_dims.data() + x_dims.size(),
x_dims_array + axis);
std::copy(y_dims.data(), y_dims.data() + y_dims.size(), y_dims_array);
}
for (int i = 0; i < max_dim; i++) {
FDASSERT(x_dims_array[i] == y_dims_array[i] || x_dims_array[i] <= 1 ||
y_dims_array[i] <= 1,
"Broadcast dimension mismatch. Operands "
"could not be broadcast together with the shape of "
"X = [%s] and the shape of Y = [%s]. Received [%d] "
"in X is not equal to [%d] in Y.",
Str(x_dims).c_str(), Str(y_dims).c_str(), x_dims[i + axis],
y_dims[i]);
if ((x_dims_array[i] > 1 || y_dims_array[i] > 1) ||
(x_dims_array[i] == 1 && y_dims_array[i] == 1)) {
out_dims_array[i] = (std::max)(x_dims_array[i], y_dims_array[i]);
} else {
out_dims_array[i] = -1;
}
}
}
template <typename Functor, typename T, typename OutType = T>
void CommonForwardBroadcastCPU(const FDTensor& x, const FDTensor& y,
FDTensor* z, int64_t* x_dims_array,
int64_t* y_dims_array, int64_t* out_dims_array,
int max_dim, Functor func,
const bool is_xsize_larger = true) {
std::vector<int64_t> index_array(max_dim, 0);
const T* x_data = reinterpret_cast<const T*>(x.Data());
const T* y_data = reinterpret_cast<const T*>(y.Data());
FDASSERT(x_data != nullptr, "The input X should not be empty.");
FDASSERT(y_data != nullptr, "The input X should not be empty.");
OutType* out_data = reinterpret_cast<OutType*>(z->Data());
const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
1, std::multiplies<int64_t>());
int x_index, y_index;
for (int out_index = 0; out_index < out_size; ++out_index) {
x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
if (is_xsize_larger) {
out_data[out_index] = func(x_data[x_index], y_data[y_index]);
} else {
out_data[out_index] = func(y_data[y_index], x_data[x_index]);
}
UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
}
}
template <typename Functor, typename T, typename OutType = T>
void CommonElementwiseBroadcastForward(const FDTensor& x, const FDTensor& y,
FDTensor* z,
const std::vector<int64_t>& x_dims,
const std::vector<int64_t>& y_dims,
Functor func, int axis,
const bool is_xsize_larger = true) {
int x_dims_size = x_dims.size();
int y_dims_size = y_dims.size();
int max_dim = (std::max)(x_dims_size, y_dims_size);
axis = (axis == -1 ? std::abs(x_dims_size - y_dims_size) : axis);
FDASSERT(axis >= 0,
"Axis should be great than or equal to 0, but received axis is %d.",
axis);
FDASSERT(axis < max_dim,
"Axis should be less than %d, but received axis is %d.", max_dim,
axis);
std::vector<int64_t> x_dims_array(max_dim);
std::vector<int64_t> y_dims_array(max_dim);
std::vector<int64_t> out_dims_array(max_dim);
GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
y_dims_array.data(), out_dims_array.data(), max_dim,
axis);
FDTensor tmp;
tmp.Allocate(out_dims_array, TypeToDataType<OutType>::dtype);
CommonForwardBroadcastCPU<Functor, T, OutType>(
x, y, &tmp, x_dims_array.data(), y_dims_array.data(),
out_dims_array.data(), max_dim, func, is_xsize_larger);
*z = std::move(tmp);
}
template <typename Functor, typename T, typename OutType = T>
void ElementwiseCompute(const FDTensor& x, const FDTensor& y, int axis,
Functor func, FDTensor* z) {
auto x_dims = x.Shape();
auto y_dims = y.Shape();
bool is_xsize_larger = true;
int max_dim = x_dims.size();
if (x_dims.size() < y_dims.size()) {
is_xsize_larger = false;
max_dim = y_dims.size();
}
int diff_size = x_dims.size() - y_dims.size();
axis = (axis == -1 ? std::abs(diff_size) : axis);
FDASSERT(axis >= 0,
"Axis should be great than or equal to 0, but received axis is %d.",
axis);
FDASSERT(axis < max_dim,
"Axis should be less than %d, but received axis is %d.", max_dim,
axis);
int pre, n, post, is_run_common_broadcast, axis_trim = 0;
if (is_xsize_larger) {
auto y_dims_trimed = TrimTrailingSingularDims(y_dims);
axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
GetMidDims(x_dims, y_dims_trimed, axis_trim, &pre, &n, &post,
&is_run_common_broadcast);
} else {
auto x_dims_trimed = TrimTrailingSingularDims(x_dims);
axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
GetMidDims(y_dims, x_dims_trimed, axis_trim, &pre, &n, &post,
&is_run_common_broadcast);
}
// special case for common implementation.
// case 1: x=[2,3,1,5], y=[2,1,4,1]
// case 2: x=[2,3,4], y=[1,1,4]
CommonElementwiseBroadcastForward<Functor, T, OutType>(
x, y, z, x_dims, y_dims, func, axis, is_xsize_larger);
}
} // namespace function
} // namespace fastdeploy