mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00

* [FlyCV] Bump up FlyCV -> official release 1.0.0 * add valid_xpu for detection * add paddledetection model support for xpu * support all detection model in c++ and python * fix code * add python stable_diffusion support Co-authored-by: DefTruth <qiustudent_r@163.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
73 lines
1.8 KiB
Python
Executable File
73 lines
1.8 KiB
Python
Executable File
import cv2
|
||
import os
|
||
|
||
import fastdeploy as fd
|
||
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--model_dir",
|
||
default=None,
|
||
help="Path of PaddleDetection model directory")
|
||
parser.add_argument(
|
||
"--image", default=None, help="Path of test image file.")
|
||
parser.add_argument(
|
||
"--device",
|
||
type=str,
|
||
default='cpu',
|
||
help="Type of inference device, support 'xpu', 'cpu' or 'gpu'.")
|
||
parser.add_argument(
|
||
"--use_trt",
|
||
type=ast.literal_eval,
|
||
default=False,
|
||
help="Wether to use tensorrt.")
|
||
return parser.parse_args()
|
||
|
||
|
||
def build_option(args):
|
||
option = fd.RuntimeOption()
|
||
|
||
if args.device.lower() == "xpu":
|
||
option.use_xpu()
|
||
|
||
if args.device.lower() == "gpu":
|
||
option.use_gpu()
|
||
|
||
if args.use_trt:
|
||
option.use_trt_backend()
|
||
return option
|
||
|
||
|
||
args = parse_arguments()
|
||
|
||
if args.model_dir is None:
|
||
model_dir = fd.download_model(name='ppyoloe_crn_l_300e_coco')
|
||
else:
|
||
model_dir = args.model_dir
|
||
|
||
model_file = os.path.join(model_dir, "model.pdmodel")
|
||
params_file = os.path.join(model_dir, "model.pdiparams")
|
||
config_file = os.path.join(model_dir, "infer_cfg.yml")
|
||
|
||
# 配置runtime,加载模型
|
||
runtime_option = build_option(args)
|
||
model = fd.vision.detection.PPYOLOE(
|
||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||
|
||
# 预测图片检测结果
|
||
if args.image is None:
|
||
image = fd.utils.get_detection_test_image()
|
||
else:
|
||
image = args.image
|
||
im = cv2.imread(image)
|
||
result = model.predict(im)
|
||
print(result)
|
||
|
||
# 预测结果可视化
|
||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||
print("Visualized result save in ./visualized_result.jpg")
|