Files
FastDeploy/examples/vision/segmentation/paddleseg/rknpu2/python
huangjianhui 19008a2397 [Other]Update im.copy() to im in examples (#854)
* Update keypointdetection result docs

* Update im.copy() to im in examples
2022-12-12 09:47:54 +08:00
..
2022-11-07 20:49:41 +08:00

PaddleSeg Python部署示例

在部署前,需确认以下两个步骤

【注意】如你部署的为PP-MattingPP-HumanMatting以及ModNet请参考Matting模型部署

本目录下提供infer.py快速完成PPHumanseg在RKNPU上部署的示例。执行如下脚本即可完成

# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/segmentation/paddleseg/python

# 下载图片
wget https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/images.zip
unzip images.zip

# 推理
python3 infer.py --model_file ./Portrait_PP_HumanSegV2_Lite_256x144_infer/Portrait_PP_HumanSegV2_Lite_256x144_infer_rk3588.rknn \
                --config_file ./Portrait_PP_HumanSegV2_Lite_256x144_infer/deploy.yaml \
                --image images/portrait_heng.jpg

运行完成可视化结果如下图所示

注意事项

RKNPU上对模型的输入要求是使用NHWC格式且图片归一化操作会在转RKNN模型时内嵌到模型中因此我们在使用FastDeploy部署时 需要先调用DisableNormalizePermute(C++)或`disable_normalize_permute(Python),在预处理阶段禁用归一化以及数据格式的转换。

其它文档