Files
FastDeploy/fastdeploy/input/text_processor.py
luukunn 18f4977aec
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
[fix]update apply_chat_template (#4137)
* update apply_chat_template

* fix unittest

* fix unittest

* fix

* fix

* fix unit test

* fix

* fix unit test

* add unit test
2025-09-24 18:56:32 +08:00

736 lines
28 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from abc import ABC, abstractmethod
import numpy as np
from paddleformers.generation import GenerationConfig
from paddleformers.transformers import Llama3Tokenizer, LlamaTokenizer
from fastdeploy import envs
from fastdeploy.utils import data_processor_logger
_SAMPLING_EPS = 1e-5
class BaseDataProcessor(ABC):
"""base class for data processor"""
def __init__(self):
"""
Returns:
None
"""
self.tokenizer = self._load_tokenizer()
self.tokenizer.bos_token_id = self.tokenizer._convert_token_to_id(self.tokenizer.bos_token)
self.tokenizer.cls_token_id = self.tokenizer._convert_token_to_id(self.tokenizer.cls_token)
self.tokenizer.sep_token_id = self.tokenizer._convert_token_to_id(self.tokenizer.sep_token)
self.tokenizer.eos_token_id = self.tokenizer._convert_token_to_id(self.tokenizer.eos_token)
self.tokenizer.mask_token_id = self.tokenizer._convert_token_to_id(self.tokenizer.mask_token)
data_processor_logger.info(
(
f"tokenizer information: bos_token is {self.tokenizer.bos_token}, {self.tokenizer.bos_token_id}, ",
f"cls_token is {self.tokenizer.cls_token}, {self.tokenizer.cls_token_id}, "
f"sep_token is {self.tokenizer.sep_token}, {self.tokenizer.sep_token_id}, "
f"eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id}, "
f"mask_token is {self.tokenizer.mask_token}, {self.tokenizer.mask_token_id}",
)
)
def _apply_default_parameters(self, request):
"""
Apply default value for parameters in request
"""
def set_value(req, key, value):
value = getattr(self.generation_config, key, value)
if isinstance(req, dict):
if key not in req:
req[key] = value
else:
if req.get(key) is None:
req.set(key, value)
set_value(request, "top_p", 0.7)
set_value(request, "temperature", 1.0)
set_value(request, "repetition_penalty", 1.0)
set_value(request, "frequency_penalty", 0.0)
set_value(request, "presence_penalty", 0.0)
return request
@abstractmethod
def process_request(self, request, **kwargs):
"""
Preprocess the request
Args:
request (Dict): may contain text and messages fields
**kwargs: others
Returns:
bool: Whether preprocessing is successful
str: error message
"""
raise NotImplementedError
@abstractmethod
def process_response(self, response_dict):
"""
Preprocess the response
Args:
response_dict (Dict): response for engine, contain ids fields
Returns:
Dict: response contain text fields
"""
raise NotImplementedError
def text2ids(self, text, max_model_len=None):
"""
text to token ids
Args:
text (str): text
Returns:
List[int]: token ids list
"""
raise NotImplementedError
def messages2ids(self, messages):
"""
Convert multi-turn messages into ID sequences.
Args:
messages (List[List[Dict[str, Any]]]): multi-turn messages.
Returns:
List[int]: ID sequences
"""
raise NotImplementedError
def ids2tokens(self, token_id, task_id=None):
"""
token ids to strings
Args:
token_id (List[int]): token id
task_id (str): task id
Returns:
List[str]: strings
"""
raise NotImplementedError
@abstractmethod
def _load_tokenizer(self):
"""
load tokenizer
Returns:
tokenizer (AutoTokenizer)
"""
raise NotImplementedError
class DataProcessor(BaseDataProcessor):
def __init__(self, model_name_or_path, reasoning_parser_obj=None, tool_parser_obj=None):
"""
Initializes the DecodeStatus object.
Args:
model_name_or_path (str): The name or path of the pre-trained model to be loaded.
Can also be a path to a directory containing the pre-trained model file.
Returns:
None.
Raises:
None.
"""
self.model_name_or_path = model_name_or_path
# Generation config
try:
self.generation_config = GenerationConfig.from_pretrained(self.model_name_or_path)
except Exception as e:
data_processor_logger.warning(
f"Can't find generation config: {e}, so it will not use generation_config field in the model config"
)
self.generation_config = None
self.decode_status = dict()
self.tool_parser_dict = dict()
self.tokenizer = self._load_tokenizer()
data_processor_logger.info(
f"tokenizer information: bos_token is {self.tokenizer.bos_token}, {self.tokenizer.bos_token_id}, \
eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id} "
)
from paddleformers.trl.llm_utils import get_eos_token_id
self.eos_token_ids = get_eos_token_id(self.tokenizer, self.generation_config)
data_processor_logger.info(
f"The eos_token_ids obtained by merging tokenizer and generation_config is {self.eos_token_ids}"
)
self.eos_token_id_len = len(self.eos_token_ids)
self.pad_token_id = self.get_pad_id()
self.reasoning_parser = None
self.tool_parser_obj = tool_parser_obj
if reasoning_parser_obj:
self.reasoning_parser = reasoning_parser_obj(self.tokenizer)
self.tokenizer.pad_token_id = self.pad_token_id
def process_request(self, request, max_model_len=None, **kwargs):
"""
Preprocess the request
Args:
request (Dict): may contain text and messages fields
Returns:
bool: Whether preprocessing is successful
str: error message
"""
data_processor_logger.info(f"Start processing request: {request}")
request = self._apply_default_parameters(request)
if request.get("eos_token_ids") is None or len(request.eos_token_ids) == 0:
request.eos_token_ids = self.eos_token_ids
# processing stop_sequences
stop_sequences = request.get("stop", [])
if stop_sequences is not None and len(stop_sequences) != 0:
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
request.set("stop_token_ids", stop_seqs)
request.set("stop_seqs_len", stop_seqs_len)
# processing bad_words
bad_words = request.get("bad_words")
bad_words_token_ids = request.get("bad_words_token_ids")
if bad_words:
bad_words_token_ids = self.update_bad_words(bad_words, bad_words_token_ids)
request["bad_words_token_ids"] = bad_words_token_ids
# processing prompt_token_ids
if request.prompt_token_ids is None or len(request.prompt_token_ids) == 0:
if request.prompt is not None:
prompt = request.prompt
assert isinstance(prompt, str) or (
isinstance(prompt, list) and all([isinstance(t, int) for t in prompt])
), f"prompt must be a string or a list of integers, but got {type(prompt)}"
if isinstance(prompt, list): # if prompt is a token id list
request.prompt_token_ids = prompt
else:
request.prompt_token_ids = self.text2ids(request.prompt, max_model_len)
elif request.messages is not None:
if self.tokenizer.chat_template is None:
raise ValueError("This model does not support chat_template.")
task = request.to_dict()
chat_template_kwargs = kwargs.get("chat_template_kwargs", {})
if chat_template_kwargs:
if isinstance(chat_template_kwargs, dict):
for k, v in chat_template_kwargs.items():
if k not in task:
task[k] = v
else:
raise ValueError("Invalid input: chat_template_kwargs must be a dict")
task.setdefault("enable_thinking", True)
request.prompt_token_ids = self.messages2ids(task, **chat_template_kwargs)
else:
raise ValueError(f"The request should have `input_ids`, `text` or `messages`: {request}.")
if len(request.prompt_token_ids) == 0:
raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
# truncate prompts that exceed the length limit
if max_model_len is not None and len(request.prompt_token_ids) > max_model_len:
request.prompt_token_ids = request.prompt_token_ids[: max_model_len - 1]
if request.get("max_tokens") is None:
request.set("max_tokens", max(1, max_model_len - len(request.prompt_token_ids)))
if request.get("temperature") < _SAMPLING_EPS:
# zero temperature is equivalent to greedy sampling
request.set("temperature", 1)
if request.get("top_p") < _SAMPLING_EPS:
request.set("top_p", _SAMPLING_EPS)
data_processor_logger.info(f"Processed request: {request}")
return request
def process_request_dict(self, request, max_model_len=None, **kwargs):
"""
Preprocess the request
Args:
request (Dict): may contain text and messages fields
Returns:
bool: Whether preprocessing is successful
str: error message
"""
data_processor_logger.info(f"Start processing request dict: {request}")
request = self._apply_default_parameters(request)
if not request.get("eos_token_ids"):
request["eos_token_ids"] = self.eos_token_ids
# processing stop_sequences
stop_sequences = request.get("stop", [])
if stop_sequences:
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
request["stop_token_ids"] = stop_seqs
request["stop_seqs_len"] = stop_seqs_len
# processing bad_words
bad_words = request.get("bad_words")
bad_words_token_ids = request.get("bad_words_token_ids")
if bad_words:
bad_words_token_ids = self.update_bad_words(bad_words, bad_words_token_ids)
request["bad_words_token_ids"] = bad_words_token_ids
# processing prompt_token_ids
if not request.get("prompt_token_ids"):
if request.get("prompt"):
prompt = request.get("prompt")
assert isinstance(prompt, str) or (
isinstance(prompt, list) and all([isinstance(t, int) for t in prompt])
), f"prompt must be a string or a list of integers, but got {type(prompt)}"
if isinstance(prompt, list): # if prompt is a token id list
request["prompt_token_ids"] = prompt
else:
request["prompt_token_ids"] = self.text2ids(request["prompt"], max_model_len).tolist()
elif request.get("messages"):
if self.tokenizer.chat_template is None:
raise ValueError("This model does not support chat_template.")
chat_template_kwargs = request.get("chat_template_kwargs", {})
if chat_template_kwargs:
if isinstance(chat_template_kwargs, dict):
for k, v in chat_template_kwargs.items():
if k not in request:
request[k] = v
else:
raise ValueError("Invalid input: chat_template_kwargs must be a dict")
request.setdefault("enable_thinking", True)
request["prompt_token_ids"] = self.messages2ids(request, **chat_template_kwargs)
else:
raise ValueError(f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}")
if len(request["prompt_token_ids"]) == 0:
raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
# truncate prompts that exceed the length limit
if max_model_len is not None and len(request["prompt_token_ids"]) > max_model_len:
request["prompt_token_ids"] = request["prompt_token_ids"][: max_model_len - 1]
if request.get("max_tokens") is None:
request["max_tokens"] = max(1, max_model_len - len(request["prompt_token_ids"]))
if request.get("temperature") < _SAMPLING_EPS:
# zero temperature is equivalent to greedy sampling
request["temperature"] = 1
if request.get("top_p") < _SAMPLING_EPS:
request["top_p"] = _SAMPLING_EPS
data_processor_logger.info(f"Processed request dict: {request}")
return request
def process_logprob_response(self, token_ids, **kwargs):
full_text = self.tokenizer.decode(token_ids, **kwargs)
return full_text
def process_response(self, response_dict, **kwargs):
"""
Preprocess the response
Args:
response_dict (Dict): response for engine, contain ids fields
Returns:
Dict: response contain text fields
"""
req_id = response_dict.request_id
token_ids = response_dict.outputs.token_ids
if token_ids[-1] == self.tokenizer.eos_token_id:
token_ids = token_ids[:-1]
full_text = self.tokenizer.decode(token_ids)
# 模型支持思考,并且支持思考
if self.reasoning_parser:
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
response_dict.outputs.text = text
response_dict.outputs.reasoning_content = reasoning_content
else:
# 模型不支持思考,并且没单独设置enable_thinking为false
response_dict.outputs.text = full_text
if self.tool_parser_obj:
tool_parser = self.tool_parser_obj(self.tokenizer)
tool_call_info = tool_parser.extract_tool_calls(full_text, response_dict)
if tool_call_info.tools_called:
response_dict.outputs.tool_calls = tool_call_info.tool_calls
response_dict.outputs.text = tool_call_info.content
data_processor_logger.info(f"req_id:{req_id}, token_ids: {token_ids}")
return response_dict
def process_response_dict_normal(self, response_dict, **kwargs):
"""
Preprocess the response
Args:
response_dict (Dict): response for engine, contain ids fields
Returns:
Dict: response contain text fields
"""
enable_thinking = kwargs.get("enable_thinking")
token_ids = response_dict["outputs"]["token_ids"]
is_end = response_dict["finished"]
req_id = response_dict["request_id"]
if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"):
if token_ids[-1] in self.eos_token_ids:
token_ids = token_ids[:-1]
delta_text, _, previous_texts = self.ids2tokens(token_ids, req_id)
if is_end:
full_text = previous_texts + delta_text
response_dict["outputs"]["raw_prediction"] = full_text
if enable_thinking and self.reasoning_parser:
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
response_dict["outputs"]["text"] = text
response_dict["outputs"]["reasoning_content"] = reasoning_content
else:
response_dict["outputs"]["text"] = full_text
if self.tool_parser_obj:
tool_parser = self.tool_parser_obj(self.tokenizer)
tool_call_info = tool_parser.extract_tool_calls(full_text, response_dict)
if tool_call_info.tools_called:
response_dict["outputs"]["tool_call"] = tool_call_info.tool_calls
response_dict["outputs"]["text"] = tool_call_info.content
data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
del self.decode_status[req_id]
return response_dict
def process_response_dict_streaming(self, response_dict, **kwargs):
"""
Preprocess the response
Args:
response_dict (Dict): response for engine, contain ids fields
Returns:
Dict: response contain text fields
"""
enable_thinking = kwargs.get("enable_thinking")
is_end = response_dict["finished"]
req_id = response_dict["request_id"]
token_ids = response_dict["outputs"]["token_ids"]
if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"):
if token_ids[-1] in self.eos_token_ids:
token_ids = token_ids[:-1]
delta_text, previous_token_ids, previous_texts = self.ids2tokens(token_ids, req_id)
response_dict["outputs"]["raw_prediction"] = delta_text
if self.reasoning_parser and (
enable_thinking or self.reasoning_parser.__class__.__name__ == "ErnieX1ReasoningParser"
):
reasoning_delta_message = self.reasoning_parser.extract_reasoning_content_streaming(
previous_texts,
previous_texts + delta_text,
delta_text,
previous_token_ids,
previous_token_ids + token_ids,
token_ids,
)
response_dict["outputs"]["delta_message"] = reasoning_delta_message
if self.tool_parser_obj:
if req_id not in self.tool_parser_dict:
self.tool_parser_dict[req_id] = self.tool_parser_obj(self.tokenizer)
tool_parser = self.tool_parser_dict[req_id]
tool_call = tool_parser.extract_tool_calls_streaming(
previous_texts,
previous_texts + delta_text,
delta_text,
previous_token_ids,
previous_token_ids + token_ids,
token_ids,
response_dict,
)
if tool_call is None or tool_call.tool_calls:
response_dict["outputs"]["delta_message"] = tool_call
response_dict["outputs"]["text"] = delta_text
if is_end:
data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
del self.decode_status[req_id]
if req_id in self.tool_parser_dict:
del self.tool_parser_dict[req_id]
return response_dict
def process_response_dict(self, response_dict, **kwargs):
"""
Preprocess the response
Args:
response_dict (Dict): response for engine, contain ids fields
Returns:
Dict: response contain text fields
"""
enable_thinking = kwargs.pop("enable_thinking", True)
if enable_thinking is None:
enable_thinking = True
stream = kwargs.get("stream", True)
if stream:
return self.process_response_dict_streaming(response_dict, enable_thinking=enable_thinking, **kwargs)
else:
return self.process_response_dict_normal(
response_dict=response_dict,
enable_thinking=enable_thinking,
**kwargs,
)
def text2ids(self, text, max_model_len):
"""
text to token ids
Args:
text (str): text
Returns:
List[int]: token ids list
"""
if envs.FD_USE_HF_TOKENIZER:
tokens = self.tokenizer(
text,
return_tensors="np",
padding=True,
truncation=True,
)
else:
text = [text] if isinstance(text, str) else text
tokens = self.tokenizer(
text,
return_tensors="np",
padding=True,
truncation=True,
max_length=max_model_len,
add_special_tokens=False,
)
return tokens["input_ids"][0]
def messages2ids(self, request, **kwargs):
"""
Convert multi-turn messages into ID sequences.
Args:
messages (List[List[Dict[str, Any]]]): multi-turn messages.
Returns:
List[int]: ID sequences
"""
spliced_message = self.tokenizer.apply_chat_template(
request,
tokenize=False,
split_special_tokens=False,
add_special_tokens=False,
return_tensors="pd",
**kwargs,
)
request["text_after_process"] = spliced_message
req_id = None
tokens = self.tokenizer.tokenize(spliced_message)
if isinstance(request, dict):
req_id = request.get("request_id", None)
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
data_processor_logger.info(f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}")
return token_ids
def ids2tokens(self, token_id, task_id):
"""
token ids to strings
Args:
token_ids (List[int]): token ids
task_id (str): task id
Returns:
List[str]: strings
"""
if envs.FD_USE_HF_TOKENIZER:
if task_id not in self.decode_status:
# history token ids & history token strings & befer decode str
self.decode_status[task_id] = [[], [], ""]
previous_token_ids = self.decode_status[task_id][0]
decode_str = self.tokenizer.batch_decode(
[previous_token_ids + token_id],
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
if isinstance(decode_str, list) and len(decode_str):
new_str = decode_str[0].replace(self.decode_status[task_id][2], "", 1)
self.decode_status[task_id][1].append(new_str)
self.decode_status[task_id][2] = decode_str[0]
else:
new_str = ""
self.decode_status[task_id][0] += token_id
return new_str
else:
if task_id not in self.decode_status:
# prefix offset & read offset & history token ids & history token strings
self.decode_status[task_id] = [0, 0, [], ""]
prefix_offset = self.decode_status[task_id][0]
read_offset = self.decode_status[task_id][1]
previous_token_ids = self.decode_status[task_id][2]
previous_texts = self.decode_status[task_id][3]
decode_str, prefix_offset, read_offset = self.tokenizer.decode_token(
previous_token_ids + token_id, prefix_offset, read_offset
)
self.decode_status[task_id][0] = prefix_offset
self.decode_status[task_id][1] = read_offset
self.decode_status[task_id][2] += token_id
self.decode_status[task_id][3] += decode_str
return decode_str, previous_token_ids, previous_texts
def _load_tokenizer(self):
"""
load tokenizer
Returns:
tokenizer (AutoTokenizer)
"""
if envs.FD_USE_HF_TOKENIZER:
from transformers import AutoTokenizer
return AutoTokenizer.from_pretrained(self.model_name_or_path, use_fast=False)
else:
from paddleformers.transformers import AutoTokenizer
return AutoTokenizer.from_pretrained(self.model_name_or_path, padding_side="left", use_fast=True)
def clear_request_status(self, task_id):
"""
clear request status
Args:
task_id (str): task id
Returns:
results_all (str): all token strings
"""
results_all = ""
if task_id in self.decode_status:
if envs.FD_USE_HF_TOKENIZER:
results_all = self.decode_status[task_id][2]
else:
results_all = "".join(self.decode_status[task_id][3])
del self.decode_status[task_id]
return results_all
def get_pad_id(self):
"""
get pad_token_id, if not pad_token_id, use eos_token
Returns:
int: pad_token_id
"""
if isinstance(self.tokenizer, (LlamaTokenizer, Llama3Tokenizer)) and not self.tokenizer.pad_token_id:
return self.tokenizer.eos_token
return self.tokenizer.pad_token_id
def pad_batch_data(
self,
insts,
pad_id=0,
return_seq_len=False,
return_array=True,
pad_style="right",
):
"""Pad the instances to the max sequence length in batch."""
if len(insts) == 0:
padded_insts = np.array([[]], dtype=np.int64) if return_array else [[]]
if return_seq_len:
seq_len = np.array([], dtype=np.int64) if return_array else []
return padded_insts, seq_len
return padded_insts
max_len = max(map(len, insts))
if pad_style == "left":
padded_insts = [[pad_id] * (max_len - len(inst)) + list(inst) for inst in insts]
else:
padded_insts = [list(inst) + [pad_id] * (max_len - len(inst)) for inst in insts]
if return_array:
padded_insts = np.array(padded_insts, dtype=np.int64).reshape([-1, max_len])
if return_seq_len:
seq_len = [len(inst) for inst in insts]
if return_array:
seq_len = np.array(seq_len, dtype=np.int64).reshape(-1, 1)
return padded_insts, seq_len
return padded_insts
def update_stop_seq(self, stop_sequences):
"""
Update stop sequences from request.
"""
stop_seqs = []
for seq in stop_sequences:
if seq != self.tokenizer.eos_token_id:
stop_seqs.append(self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(seq)))
stop_seqs, stop_seqs_len = self.pad_batch_data(stop_seqs, pad_id=-1, return_seq_len=True, return_array=False)
data_processor_logger.debug(f"processed stop_seqs: {stop_seqs}, {stop_seqs_len}")
return stop_seqs, stop_seqs_len
def update_bad_words(self, bad_words, bad_words_token_ids):
"""Support bad words"""
token_ids = bad_words_token_ids
if token_ids is None:
token_ids = []
for bad_word in bad_words:
# To prohibit words both at the beginning
# and in the middle of text
# (related to add_prefix_space tokenizer parameter)
for add_prefix_space in [False, True]:
prefix = " " if add_prefix_space else ""
prompt = prefix + bad_word.lstrip()
prompt_token_ids = self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(prompt))
if len(prompt_token_ids) != 1:
if not add_prefix_space:
data_processor_logger.warning(
f"Skip bad_words: <{prompt}>."
f"Bad words should be a single token."
f"Got tokens: {prompt_token_ids}."
)
continue
if prompt_token_ids[0] > self.tokenizer.vocab_size:
if not add_prefix_space:
data_processor_logger.warning(
f"Skip bad_words: <{prompt}>."
f"All token id values should be satisfying:"
f" 0 <= token_id < {self.tokenizer.vocab_size}."
f"Got token: {prompt_token_ids}."
)
continue
if prompt_token_ids not in token_ids:
token_ids.extend(prompt_token_ids)
return token_ids