mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
* update apply_chat_template * fix unittest * fix unittest * fix * fix * fix unit test * fix * fix unit test * add unit test
355 lines
14 KiB
Python
355 lines
14 KiB
Python
"""
|
||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""
|
||
|
||
import inspect
|
||
import os
|
||
import time
|
||
import traceback
|
||
import uuid
|
||
|
||
import numpy as np
|
||
|
||
from fastdeploy import envs
|
||
from fastdeploy.config import ModelConfig
|
||
from fastdeploy.entrypoints.openai.utils import DealerConnectionManager
|
||
from fastdeploy.envs import FD_SUPPORT_MAX_CONNECTIONS
|
||
from fastdeploy.input.preprocess import InputPreprocessor
|
||
from fastdeploy.inter_communicator import IPCSignal, ZmqIpcClient
|
||
from fastdeploy.metrics.work_metrics import work_process_metrics
|
||
from fastdeploy.multimodal.registry import MultimodalRegistry
|
||
from fastdeploy.platforms import current_platform
|
||
from fastdeploy.utils import (
|
||
EngineError,
|
||
ParameterError,
|
||
StatefulSemaphore,
|
||
api_server_logger,
|
||
)
|
||
|
||
|
||
class EngineClient:
|
||
"""
|
||
EngineClient is a class that handles the communication between the client and the server.
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
model_name_or_path,
|
||
tokenizer,
|
||
max_model_len,
|
||
tensor_parallel_size,
|
||
pid,
|
||
port,
|
||
limit_mm_per_prompt,
|
||
mm_processor_kwargs,
|
||
# enable_mm=False,
|
||
reasoning_parser=None,
|
||
data_parallel_size=1,
|
||
enable_logprob=False,
|
||
workers=1,
|
||
tool_parser=None,
|
||
):
|
||
architectures = ModelConfig({"model": model_name_or_path}).architectures[0]
|
||
if MultimodalRegistry.contains_model(architectures):
|
||
self.enable_mm = True
|
||
else:
|
||
self.enable_mm = False
|
||
|
||
input_processor = InputPreprocessor(
|
||
tokenizer,
|
||
reasoning_parser,
|
||
limit_mm_per_prompt,
|
||
mm_processor_kwargs,
|
||
self.enable_mm,
|
||
tool_parser,
|
||
)
|
||
self.enable_logprob = enable_logprob
|
||
self.reasoning_parser = reasoning_parser
|
||
self.data_processor = input_processor.create_processor()
|
||
self.max_model_len = max_model_len
|
||
max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
|
||
|
||
if tensor_parallel_size <= max_chips_per_node:
|
||
self.is_master = True
|
||
else:
|
||
self.is_master = False
|
||
|
||
array_size = min(max_chips_per_node, tensor_parallel_size)
|
||
self.worker_healthy_live_recorded_time_array = np.zeros(shape=[array_size], dtype=np.int32)
|
||
self.worker_healthy_live_signal = IPCSignal(
|
||
name="worker_healthy_live_signal",
|
||
array=self.worker_healthy_live_recorded_time_array,
|
||
dtype=np.int32,
|
||
suffix=port,
|
||
create=False,
|
||
)
|
||
self.semaphore = StatefulSemaphore((FD_SUPPORT_MAX_CONNECTIONS + workers - 1) // workers)
|
||
model_weights_status = np.zeros([1], dtype=np.int32)
|
||
self.model_weights_status_signal = IPCSignal(
|
||
name="model_weights_status",
|
||
array=model_weights_status,
|
||
dtype=np.int32,
|
||
suffix=port,
|
||
create=False,
|
||
)
|
||
self.connection_manager = DealerConnectionManager(
|
||
pid, max_connections=int(os.getenv("FD_DEALER_CONNECTIONS", 50))
|
||
)
|
||
self.connection_initialized = False
|
||
|
||
def create_zmq_client(self, model, mode):
|
||
"""
|
||
Create a ZMQ client.
|
||
"""
|
||
self.zmq_client = ZmqIpcClient(model, mode)
|
||
self.zmq_client.connect()
|
||
|
||
async def format_and_add_data(self, prompts: dict):
|
||
"""
|
||
Format the request data and send the request to the server.
|
||
"""
|
||
if "request_id" not in prompts:
|
||
request_id = str(uuid.uuid4())
|
||
prompts["request_id"] = request_id
|
||
|
||
if "max_tokens" not in prompts:
|
||
prompts["max_tokens"] = self.max_model_len - 1
|
||
|
||
await self.add_requests(prompts)
|
||
return prompts["prompt_token_ids"]
|
||
|
||
async def add_requests(self, task):
|
||
"""
|
||
Add a new request to the queue.
|
||
|
||
Args:
|
||
task: Request A dictionary representing the request.
|
||
sampling_params: A dictionary representing the sampling parameters.
|
||
|
||
Returns:
|
||
None
|
||
"""
|
||
|
||
task["preprocess_start_time"] = time.time()
|
||
try:
|
||
chat_template_kwargs = task.get("chat_template_kwargs", {})
|
||
chat_template_kwargs.update({"chat_template": task.get("chat_template"), "tools": task.get("tools")})
|
||
task["chat_template_kwargs"] = chat_template_kwargs
|
||
if inspect.iscoroutinefunction(self.data_processor.process_request_dict):
|
||
await self.data_processor.process_request_dict(task, self.max_model_len)
|
||
else:
|
||
self.data_processor.process_request_dict(task, self.max_model_len)
|
||
|
||
task["prompt_token_ids_len"] = len(task["prompt_token_ids"])
|
||
input_ids_len = task["prompt_token_ids_len"]
|
||
task["max_tokens"] = min(self.max_model_len - input_ids_len, task.get("max_tokens"))
|
||
if task.get("reasoning_max_tokens", None) is None:
|
||
task["reasoning_max_tokens"] = max(int(task["max_tokens"] * 0.8), 1)
|
||
min_tokens = task.get("min_tokens", 1)
|
||
if "messages" in task:
|
||
del task["messages"]
|
||
api_server_logger.info(f"task['max_tokens']:{task['max_tokens']}")
|
||
work_process_metrics.request_params_max_tokens.observe(task["max_tokens"])
|
||
work_process_metrics.prompt_tokens_total.inc(input_ids_len)
|
||
work_process_metrics.request_prompt_tokens.observe(input_ids_len)
|
||
except Exception as e:
|
||
api_server_logger.error(f"add_requests error: {e}, {str(traceback.format_exc())}")
|
||
raise EngineError(str(e), error_code=400)
|
||
|
||
if input_ids_len + min_tokens >= self.max_model_len:
|
||
error_msg = (
|
||
f"Input text is too long, input_ids_len ({input_ids_len}) "
|
||
f"+ min_tokens({min_tokens}) >= max_model_len({self.max_model_len})"
|
||
)
|
||
api_server_logger.error(error_msg)
|
||
raise EngineError(error_msg, error_code=400)
|
||
|
||
if input_ids_len > self.max_model_len:
|
||
error_msg = (
|
||
f"Length of input token({input_ids_len}) exceeds the limit max_model_len({self.max_model_len})."
|
||
)
|
||
api_server_logger.error(error_msg)
|
||
raise EngineError(error_msg, error_code=400)
|
||
|
||
if "stop_seqs_len" in task:
|
||
stop_seqs_len = task["stop_seqs_len"]
|
||
max_stop_seqs_num = int(envs.FD_MAX_STOP_SEQS_NUM)
|
||
if len(stop_seqs_len) > max_stop_seqs_num:
|
||
error_msg = (
|
||
f"Length of stop ({stop_seqs_len}) exceeds the limit max_stop_seqs_num({max_stop_seqs_num})."
|
||
"Please reduce the number of stop or set a lager max_stop_seqs_num by `FD_MAX_STOP_SEQS_NUM`"
|
||
)
|
||
api_server_logger.error(error_msg)
|
||
raise EngineError(error_msg, error_code=400)
|
||
stop_seqs_max_len = int(envs.FD_STOP_SEQS_MAX_LEN)
|
||
for single_stop_seq_len in stop_seqs_len:
|
||
if single_stop_seq_len > stop_seqs_max_len:
|
||
error_msg = (
|
||
f"Length of stop_seqs({single_stop_seq_len}) exceeds the limit stop_seqs_max_len({stop_seqs_max_len})."
|
||
"Please reduce the length of stop sequences or set a larger stop_seqs_max_len by `FD_STOP_SEQS_MAX_LEN`"
|
||
)
|
||
api_server_logger.error(error_msg)
|
||
raise EngineError(error_msg, error_code=400)
|
||
|
||
task["preprocess_end_time"] = time.time()
|
||
preprocess_cost_time = task["preprocess_end_time"] - task["preprocess_start_time"]
|
||
api_server_logger.info(
|
||
f"Cache request with request_id ({task.get('request_id')}), "
|
||
f"preprocess time cost {preprocess_cost_time}"
|
||
)
|
||
|
||
self.valid_parameters(task)
|
||
api_server_logger.debug(f"Receive task: {task}")
|
||
try:
|
||
if not self.enable_mm:
|
||
self.zmq_client.send_json(task)
|
||
else:
|
||
self.zmq_client.send_pyobj(task)
|
||
except Exception as e:
|
||
api_server_logger.error(f"zmq_client send task error: {e}, {str(traceback.format_exc())}")
|
||
raise EngineError(str(e), error_code=400)
|
||
|
||
def valid_parameters(self, data):
|
||
"""
|
||
Validate stream options
|
||
超参数(top_p、seed、frequency_penalty、temperature、presence_penalty)的校验逻辑
|
||
前置到了ChatCompletionRequest/CompletionRequest中
|
||
"""
|
||
|
||
if data.get("n") is not None:
|
||
if data["n"] != 1:
|
||
raise ParameterError("n", "n only support 1.")
|
||
|
||
if data.get("max_tokens") is not None:
|
||
if data["max_tokens"] < 1 or data["max_tokens"] >= self.max_model_len:
|
||
raise ParameterError("max_tokens", f"max_tokens can be defined [1, {self.max_model_len}).")
|
||
|
||
if data.get("reasoning_max_tokens") is not None:
|
||
if data["reasoning_max_tokens"] < 1:
|
||
raise ParameterError("reasoning_max_tokens", "reasoning_max_tokens must be greater than 1")
|
||
if data["reasoning_max_tokens"] > data["max_tokens"]:
|
||
data["reasoning_max_tokens"] = data["max_tokens"]
|
||
api_server_logger.warning(
|
||
f"req_id: {data['request_id']}, reasoning_max_tokens exceeds max_tokens, the value of reasoning_max_tokens will be adjusted to match that of max_tokens"
|
||
)
|
||
|
||
# logprobs
|
||
logprobs = data.get("logprobs")
|
||
top_logprobs = None
|
||
|
||
if isinstance(logprobs, bool) and logprobs:
|
||
if not self.enable_logprob:
|
||
err_msg = "Logprobs is disabled, please enable it in startup config."
|
||
api_server_logger.error(err_msg)
|
||
raise ParameterError("logprobs", err_msg)
|
||
top_logprobs = data.get("top_logprobs")
|
||
elif isinstance(logprobs, int):
|
||
top_logprobs = logprobs
|
||
elif logprobs:
|
||
raise ParameterError("logprobs", "Invalid type for 'logprobs'")
|
||
|
||
# enable_logprob
|
||
if top_logprobs:
|
||
if not self.enable_logprob:
|
||
err_msg = "Logprobs is disabled, please enable it in startup config."
|
||
api_server_logger.error(err_msg)
|
||
raise ParameterError("logprobs", err_msg)
|
||
|
||
if not isinstance(top_logprobs, int):
|
||
err_type = type(top_logprobs).__name__
|
||
err_msg = f"Invalid type for 'top_logprobs': expected int but got {err_type}."
|
||
api_server_logger.error(err_msg)
|
||
raise ParameterError("top_logprobs", err_msg)
|
||
|
||
if top_logprobs < 0:
|
||
err_msg = f"Invalid 'top_logprobs': must be >= 0, got {top_logprobs}."
|
||
api_server_logger.error(err_msg)
|
||
raise ParameterError("top_logprobs", err_msg)
|
||
|
||
if top_logprobs > 20:
|
||
err_msg = "Invalid value for 'top_logprobs': must be <= 20."
|
||
api_server_logger.error(err_msg)
|
||
raise ParameterError("top_logprobs", err_msg)
|
||
|
||
def check_health(self, time_interval_threashold=30):
|
||
"""
|
||
Check the health of the model server by checking whether all workers are alive.
|
||
|
||
"""
|
||
if self.worker_healthy_live_signal.value[0]:
|
||
elapsed_time = time.time() - self.worker_healthy_live_signal.value[0]
|
||
if elapsed_time > time_interval_threashold:
|
||
return False, "Worker Service Not Healthy"
|
||
|
||
return True, ""
|
||
|
||
def is_workers_alive(self):
|
||
"""
|
||
Check the health of the model server by checking whether all workers are alive.
|
||
|
||
"""
|
||
if self.model_weights_status_signal.value[0] == 0:
|
||
return True, ""
|
||
else:
|
||
return False, "No model weight enabled"
|
||
|
||
def update_model_weight(self, timeout=300):
|
||
"""
|
||
Update the model weight by sending a signal to the server.
|
||
1 : worker receive the signal and start to update model weight
|
||
2 : worker update finish and notify client
|
||
"""
|
||
if self.model_weights_status_signal.value[0] == 0:
|
||
return True, ""
|
||
if self.model_weights_status_signal.value[0] == 1:
|
||
return False, "updating model weight already"
|
||
|
||
self.model_weights_status_signal.value[0] = 1
|
||
api_server_logger.info(f"start update model weight {self.model_weights_status_signal.value}")
|
||
while self.model_weights_status_signal.value[0] != 0 and timeout != 0:
|
||
time.sleep(1)
|
||
timeout -= 1
|
||
continue
|
||
if self.model_weights_status_signal.value[0] != 0:
|
||
return False, "Update model weight timeout"
|
||
time.sleep(1)
|
||
return True, ""
|
||
|
||
def clear_load_weight(self, timeout=300):
|
||
"""
|
||
Clear the load weight status.
|
||
-1 : worker receive the signal and start to clear model weight
|
||
-2 : worker clear finish and notify client
|
||
"""
|
||
if self.model_weights_status_signal.value[0] == -2:
|
||
return True, ""
|
||
if self.model_weights_status_signal.value[0] == -1:
|
||
return False, "clearing model weight already"
|
||
|
||
self.model_weights_status_signal.value[0] = -1
|
||
|
||
api_server_logger.info(f"start clear model weight {self.model_weights_status_signal.value}")
|
||
while self.model_weights_status_signal.value[0] != -2 and timeout != 0:
|
||
time.sleep(1)
|
||
timeout -= 1
|
||
continue
|
||
if self.model_weights_status_signal.value[0] != -2:
|
||
return False, "clear model weight timeout"
|
||
time.sleep(1)
|
||
return True, ""
|
||
|
||
def check_model_weight_status(self):
|
||
return self.model_weights_status_signal.value[0] < 0
|