mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled
Publish Job / Run Stable Tests (push) Has been cancelled
CI Images Build / FD-Clone-Linux (push) Has been cancelled
CI Images Build / Show Code Archive Output (push) Has been cancelled
CI Images Build / CI Images Build (push) Has been cancelled
CI Images Build / BUILD_SM8090 (push) Has been cancelled
CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
CI Images Build / Run Base Tests (push) Has been cancelled
CI Images Build / Run Accuracy Tests (push) Has been cancelled
CI Images Build / Run Stable Tests (push) Has been cancelled
CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
* update apply_chat_template * fix unittest * fix unittest * fix * fix * fix unit test * fix * fix unit test * add unit test
758 lines
32 KiB
Python
758 lines
32 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
import multiprocessing
|
|
import os
|
|
import re
|
|
import signal
|
|
import subprocess
|
|
import sys
|
|
import threading
|
|
import time
|
|
import traceback
|
|
import uuid
|
|
import weakref
|
|
from dataclasses import asdict
|
|
|
|
import numpy as np
|
|
import paddle
|
|
from tqdm import tqdm
|
|
|
|
from fastdeploy.engine.args_utils import EngineArgs
|
|
from fastdeploy.engine.common_engine import EngineService
|
|
from fastdeploy.engine.expert_service import start_data_parallel_service
|
|
from fastdeploy.engine.request import Request
|
|
from fastdeploy.input.preprocess import InputPreprocessor
|
|
from fastdeploy.inter_communicator import EngineWorkerQueue, IPCSignal
|
|
from fastdeploy.metrics.metrics import main_process_metrics
|
|
from fastdeploy.utils import EngineError, console_logger, envs, llm_logger
|
|
|
|
|
|
class LLMEngine:
|
|
"""
|
|
Engine class responsible for managing the Large Language Model (LLM) operations.
|
|
|
|
Attributes:
|
|
cfg (Config): Configuration object containing all the parameters.
|
|
cached_generated_tokens (queue.Queue): Queue to store generated tokens.
|
|
scheduler (LocalScheduler or GlobalScheduler): Scheduling tasks.
|
|
input_processor (InputPreprocessor): Preprocessor for input data.
|
|
resource_manager (ResourceManager): Manager for resource allocation.
|
|
token_processor (TokenProcessor): Processor for token generation.
|
|
engine_worker_queue (EngineWorkerQueue): Queue for communication between engine and workers.
|
|
is_started (bool): Flag indicating if the engine has started.
|
|
do_profile (int): Flag indicating if profiling is enabled.
|
|
"""
|
|
|
|
@classmethod
|
|
def from_engine_args(cls, engine_args: EngineArgs):
|
|
"""
|
|
Creates an LLM engine from the provided engine arguments.
|
|
|
|
Args:
|
|
engine_args (EngineArgs): Engine arguments object.
|
|
|
|
Returns:
|
|
LLMEngine: Instance of the LLMEngine class.
|
|
"""
|
|
# Create the engine configs.
|
|
config = engine_args.create_engine_config()
|
|
# Create the LLMEngine.
|
|
return cls(cfg=config)
|
|
|
|
def __init__(self, cfg):
|
|
"""
|
|
Initializes the LLMEngine with the provided configuration.
|
|
|
|
Args:
|
|
cfg (Config): Config object containing all the configuration parameters.
|
|
"""
|
|
self.cfg = cfg
|
|
self.running = True
|
|
self.is_started = False
|
|
|
|
self.input_processor = InputPreprocessor(
|
|
cfg.tokenizer,
|
|
cfg.reasoning_parser,
|
|
cfg.limit_mm_per_prompt,
|
|
cfg.mm_processor_kwargs,
|
|
cfg.model_config.enable_mm,
|
|
cfg.tool_parser,
|
|
)
|
|
self.engine = EngineService(cfg)
|
|
|
|
if self.cfg.cache_config.num_gpu_blocks_override is None:
|
|
self.do_profile = 1
|
|
else:
|
|
self.do_profile = 0
|
|
self._finalizer = weakref.finalize(self, self._exit_sub_services)
|
|
|
|
main_process_metrics.set_cache_config_info(obj=self.cfg.cache_config)
|
|
|
|
def start(self, api_server_pid=None):
|
|
"""
|
|
Initializes the engine and starts its sub-services.
|
|
If `api_server_pid` is defined, will launch a thread
|
|
to keep getting request from zmq_server.
|
|
"""
|
|
assert not self.is_started, "The engine is already started."
|
|
start_time = time.time()
|
|
|
|
self.api_server_pid = api_server_pid
|
|
self.ipc_signal_suffix = self.cfg.parallel_config.engine_worker_queue_port[0]
|
|
self._init_worker_signals()
|
|
|
|
self.data_processor = self.input_processor.create_processor()
|
|
self.engine.data_processor = self.data_processor
|
|
# Launch components: scheduler, cache_manager, expert_service et.al.
|
|
self.launch_components()
|
|
|
|
self.engine.start()
|
|
|
|
if self.do_profile == 0 and (
|
|
self.cfg.cache_config.enable_prefix_caching or self.cfg.scheduler_config.splitwise_role != "mixed"
|
|
):
|
|
device_ids = self.cfg.device_ids.split(",")
|
|
self.cache_manager_processes = self.engine.start_cache_service(device_ids, self.ipc_signal_suffix)
|
|
|
|
self.worker_proc = self._start_worker_service()
|
|
console_logger.info("Waiting worker processes ready...")
|
|
time.sleep(5)
|
|
self.worker_init_status = dict()
|
|
|
|
result_container = {}
|
|
|
|
def check_worker_initialize_status_func(res: dict):
|
|
res["worker_is_alive"] = True
|
|
if not self.check_worker_initialize_status():
|
|
console_logger.error("Failed to launch worker processes, check log/workerlog.* for more details.")
|
|
res["worker_is_alive"] = False
|
|
|
|
self.check_worker_initialize_status_func_thread = threading.Thread(
|
|
target=check_worker_initialize_status_func, args=(result_container,), daemon=True
|
|
)
|
|
self.check_worker_initialize_status_func_thread.start()
|
|
|
|
# Wait model loading
|
|
while self.loaded_model_signal.value[0] == 0:
|
|
# Make sure worker process is alive
|
|
if not self.check_worker_initialize_status_func_thread.is_alive():
|
|
return False
|
|
time.sleep(1)
|
|
|
|
if self.do_profile:
|
|
self._stop_profile()
|
|
|
|
if self.cfg.cache_config.enable_prefix_caching or self.cfg.scheduler_config.splitwise_role != "mixed":
|
|
self.launched_cache_manager_signal.value[0] = 1
|
|
|
|
if api_server_pid is not None:
|
|
llm_logger.info(f"Start zmq server, api_server_pid: {api_server_pid}")
|
|
self.engine.start_zmq_service(api_server_pid)
|
|
|
|
# Worker launched
|
|
self.check_worker_initialize_status_func_thread.join()
|
|
if not result_container["worker_is_alive"]:
|
|
console_logger.error("Failed to launch worker processes, check log/workerlog.* for more details.")
|
|
return False
|
|
|
|
console_logger.info(f"Worker processes are launched with {time.time() - start_time} seconds.")
|
|
return True
|
|
|
|
def _get_generated_result(self):
|
|
"""
|
|
Get result from scheduler, this function is called by generate()
|
|
which is only used in offline inference.
|
|
"""
|
|
return self.engine.scheduler.get_results()
|
|
|
|
# _insert_task_to_worker moved to CommonEngine
|
|
|
|
def _has_guided_input(self, request):
|
|
"""
|
|
Check if the request has any guided input.
|
|
"""
|
|
return any(
|
|
x is not None
|
|
for x in (
|
|
request.guided_json,
|
|
request.guided_regex,
|
|
request.guided_choice,
|
|
request.structural_tag,
|
|
request.guided_grammar,
|
|
request.guided_json_object,
|
|
)
|
|
)
|
|
|
|
def add_requests(self, task, sampling_params=None, **kwargs):
|
|
"""
|
|
Add a new request to the queue.
|
|
|
|
Args:
|
|
task: Request A dictionary representing the request.
|
|
sampling_params: A dictionary representing the sampling parameters.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
# TODO 输入输出长度确认
|
|
|
|
if sampling_params is not None:
|
|
task.update(asdict(sampling_params))
|
|
request = Request.from_dict(task)
|
|
llm_logger.info(f"Receive request {request}")
|
|
if sampling_params is not None:
|
|
request.sampling_params = sampling_params
|
|
request.preprocess_start_time = time.time()
|
|
chat_template_kwargs = kwargs.get("chat_template_kwargs") or {}
|
|
chat_template_kwargs["chat_template"] = kwargs.get("chat_template")
|
|
kwargs["chat_template_kwargs"] = chat_template_kwargs
|
|
request = self.data_processor.process_request(request, self.cfg.max_model_len, **kwargs)
|
|
request.prompt_token_ids_len = len(request.prompt_token_ids)
|
|
request.need_prefill_tokens = request.prompt_token_ids_len
|
|
input_ids_len = request.prompt_token_ids_len
|
|
request.set(
|
|
"max_tokens",
|
|
min(
|
|
self.cfg.max_model_len - input_ids_len,
|
|
request.get("max_tokens"),
|
|
),
|
|
)
|
|
if request.get("reasoning_max_tokens") is None:
|
|
default_reasoning_max_tokens = max(int(request.get("max_tokens") * 0.8), 1)
|
|
request.set("reasoning_max_tokens", default_reasoning_max_tokens)
|
|
min_tokens = request.get("min_tokens")
|
|
if input_ids_len + min_tokens >= self.cfg.max_model_len:
|
|
error_msg = (
|
|
f"Input text is too long, length of prompt token({input_ids_len}) "
|
|
f"+ min_dec_len ({min_tokens}) >= max_model_len "
|
|
)
|
|
llm_logger.error(error_msg)
|
|
raise EngineError(error_msg, error_code=400)
|
|
|
|
if input_ids_len > self.cfg.max_model_len:
|
|
error_msg = (
|
|
f"Length of input token({input_ids_len}) exceeds the limit max_model_len({self.cfg.max_model_len})."
|
|
)
|
|
llm_logger.error(error_msg)
|
|
raise EngineError(error_msg, error_code=400)
|
|
|
|
if request.get("stop_seqs_len") is not None:
|
|
stop_seqs_len = request.get("stop_seqs_len")
|
|
max_stop_seqs_num = int(envs.FD_MAX_STOP_SEQS_NUM)
|
|
if len(stop_seqs_len) > max_stop_seqs_num:
|
|
error_msg = (
|
|
f"Length of stop ({stop_seqs_len}) exceeds the limit max_stop_seqs_num({max_stop_seqs_num})."
|
|
"Please reduce the number of stop or set a lager max_stop_seqs_num by `FD_MAX_STOP_SEQS_NUM`"
|
|
)
|
|
llm_logger.error(error_msg)
|
|
raise EngineError(error_msg, error_code=400)
|
|
stop_seqs_max_len = int(envs.FD_STOP_SEQS_MAX_LEN)
|
|
for single_stop_seq_len in stop_seqs_len:
|
|
if single_stop_seq_len > stop_seqs_max_len:
|
|
error_msg = (
|
|
f"Length of stop_seqs({single_stop_seq_len}) exceeds the limit stop_seqs_max_len({stop_seqs_max_len})."
|
|
"Please reduce the length of stop sequences or set a larger stop_seqs_max_len by `FD_STOP_SEQS_MAX_LEN`"
|
|
)
|
|
llm_logger.error(error_msg)
|
|
raise EngineError(error_msg, error_code=400)
|
|
|
|
if self._has_guided_input(request):
|
|
err_msg = None
|
|
if self.guided_decoding_checker is None:
|
|
err_msg = (
|
|
"guided_backend is None, use --guided-decoding-backend to specify the backend at server startup."
|
|
)
|
|
else:
|
|
request, err_msg = self.guided_decoding_checker.schema_format(request)
|
|
|
|
if err_msg is not None:
|
|
llm_logger.error(err_msg)
|
|
raise EngineError(err_msg, error_code=400)
|
|
|
|
request.preprocess_end_time = time.time()
|
|
self.engine.scheduler.put_requests([request])
|
|
llm_logger.info(f"Cache task with request_id ({request.get('request_id')})")
|
|
llm_logger.debug(f"cache task: {request}")
|
|
|
|
def _worker_processes_ready(self):
|
|
"""
|
|
judge if all worker processes are ready
|
|
|
|
"""
|
|
if np.sum(self.worker_ready_signal.value) == self.cfg.worker_num_per_node:
|
|
return True
|
|
return False
|
|
|
|
def _init_worker_signals(self):
|
|
"""
|
|
Initialize shared memory to indicate engine status
|
|
"""
|
|
# worker_ready_signal 用于worker进程感知engine是否启动完成
|
|
worker_ready_signal_data = np.zeros(shape=[self.cfg.worker_num_per_node], dtype=np.int32)
|
|
self.worker_ready_signal = IPCSignal(
|
|
name="worker_ready_signal",
|
|
array=worker_ready_signal_data,
|
|
dtype=np.int32,
|
|
suffix=self.ipc_signal_suffix,
|
|
create=True,
|
|
)
|
|
|
|
# launched_cache_manager_signal 用于感知engine是否启动了cache_manager
|
|
if self.cfg.cache_config.enable_prefix_caching or self.cfg.scheduler_config.splitwise_role != "mixed":
|
|
launched_cache_manager_signal_data = np.zeros([1], dtype=np.int32)
|
|
self.launched_cache_manager_signal = IPCSignal(
|
|
name="launched_cache_manager_signal",
|
|
array=launched_cache_manager_signal_data,
|
|
dtype=np.int32,
|
|
suffix=self.ipc_signal_suffix,
|
|
create=True,
|
|
)
|
|
|
|
# launched_expert_service_signal: Used to sense whether each expet_servic is started successfully
|
|
if self.cfg.parallel_config.enable_expert_parallel and self.cfg.parallel_config.data_parallel_size > 1:
|
|
launched_expert_service_signal_data = np.zeros(
|
|
shape=[self.cfg.parallel_config.data_parallel_size // self.cfg.nnode], dtype=np.int32
|
|
)
|
|
self.launched_expert_service_signal = IPCSignal(
|
|
name="launched_expert_service_signal",
|
|
array=launched_expert_service_signal_data,
|
|
dtype=np.int32,
|
|
suffix=self.ipc_signal_suffix,
|
|
create=True,
|
|
)
|
|
|
|
# loaded_model_signal: Used to detect whether each worker has completed model loading
|
|
loaded_model_signal_data = np.zeros([1], dtype=np.int32)
|
|
self.loaded_model_signal = IPCSignal(
|
|
name="loaded_model_signal",
|
|
array=loaded_model_signal_data,
|
|
dtype=np.int32,
|
|
suffix=self.ipc_signal_suffix,
|
|
create=True,
|
|
)
|
|
|
|
if self.do_profile:
|
|
if paddle.is_compiled_with_custom_device("iluvatar_gpu"):
|
|
get_profile_block_num = np.zeros([self.cfg.worker_num_per_node], dtype=np.int32)
|
|
else:
|
|
get_profile_block_num = np.zeros([1], dtype=np.int32)
|
|
self.get_profile_block_num_signal = IPCSignal(
|
|
name="get_profile_block_num",
|
|
array=get_profile_block_num,
|
|
dtype=np.int32,
|
|
suffix=self.ipc_signal_suffix,
|
|
create=True,
|
|
)
|
|
|
|
def _exit_sub_services(self):
|
|
"""
|
|
exit sub services
|
|
"""
|
|
self.running = False
|
|
|
|
if hasattr(self, "cache_manager_processes"):
|
|
self.engine.resource_manager.cache_manager.shm_cache_task_flag_broadcast.clear()
|
|
self.engine.resource_manager.cache_manager.cache_ready_signal.clear()
|
|
for p in self.cache_manager_processes:
|
|
llm_logger.info(f"Killing cache manager process {p.pid}")
|
|
try:
|
|
pgid = os.getpgid(p.pid)
|
|
os.killpg(pgid, signal.SIGTERM)
|
|
except Exception as e:
|
|
console_logger.error(
|
|
f"Error killing cache manager process {p.pid}: {e}, {str(traceback.format_exc())}"
|
|
)
|
|
self.worker_ready_signal.clear()
|
|
self.loaded_model_signal.clear()
|
|
|
|
if hasattr(self, "get_profile_block_num_signal"):
|
|
self.get_profile_block_num_signal.clear()
|
|
if hasattr(self, "worker_proc") and self.worker_proc is not None:
|
|
try:
|
|
pgid = os.getpgid(self.worker_proc.pid)
|
|
os.killpg(pgid, signal.SIGTERM)
|
|
except Exception as e:
|
|
console_logger.error(f"Error extracting sub services: {e}, {str(traceback.format_exc())}")
|
|
|
|
if hasattr(self, "zmq_server") and self.zmq_server is not None:
|
|
self.zmq_server.close()
|
|
if hasattr(self, "dp_processed"):
|
|
for p in self.dp_processed:
|
|
console_logger.info(f"Waiting for worker {p.pid} to exit")
|
|
p.join()
|
|
for p in self.dp_engine_worker_queue_server:
|
|
p.cleanup()
|
|
|
|
def _setting_environ_variables(self):
|
|
"""
|
|
配置环境变量
|
|
"""
|
|
variables = {
|
|
"ENABLE_FASTDEPLOY_LOAD_MODEL_CONCURRENCY": 0,
|
|
"LOAD_STATE_DICT_THREAD_NUM": len(self.cfg.device_ids.split(",")),
|
|
"PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION": "python",
|
|
"FLAGS_use_append_attn": 1,
|
|
"NCCL_ALGO": "Ring",
|
|
"FLAGS_max_partition_size": int(os.getenv("FLAGS_max_partition_size", 1024)),
|
|
}
|
|
# environment variables needed by Dy2St
|
|
variables.update(
|
|
{
|
|
"SOT_LOG_LEVEL": os.getenv("SOT_LOG_LEVEL", default="0"),
|
|
"SOT_UNSAFE_CACHE_FASTPATH": os.getenv("SOT_UNSAFE_CACHE_FASTPATH", default="1"),
|
|
"SOT_ENABLE_0_SIZE_FALLBACK": os.getenv("SOT_ENABLE_0_SIZE_FALLBACK", default="0"),
|
|
"SOT_SPECIALIZED_DIM_NUMBERS": os.getenv("SOT_SPECIALIZED_DIM_NUMBERS", default="no"),
|
|
"FLAGS_specialize_device_in_dy2st": os.getenv("FLAGS_specialize_device_in_dy2st", default="1"),
|
|
"FLAGS_enable_async_fast_gc": os.getenv("FLAGS_enable_async_fast_gc", default="0"),
|
|
"FLAGS_pir_interpreter_record_stream_for_gc_cache": os.getenv(
|
|
"FLAGS_pir_interpreter_record_stream_for_gc_cache", default="1"
|
|
),
|
|
"FLAGS_parameters_persistent_mode_in_dy2st": os.getenv(
|
|
"FLAGS_parameters_persistent_mode_in_dy2st", default="1"
|
|
),
|
|
}
|
|
)
|
|
|
|
if self.cfg.scheduler_config.splitwise_role != "mixed":
|
|
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
|
|
variables["FLAGS_use_pd_disaggregation_per_chunk"] = 1
|
|
else:
|
|
variables["FLAGS_use_pd_disaggregation"] = 1
|
|
# TODO dynamic load environment variable
|
|
if self.cfg.scheduler_config.splitwise_role == "prefill":
|
|
variables["FLAGS_fmt_write_cache_completed_signal"] = 1
|
|
|
|
if self.cfg.model_config.enable_mm:
|
|
variables["FLAGS_max_partition_size"] = 1024
|
|
|
|
command_prefix = ""
|
|
for k, v in variables.items():
|
|
command_prefix += f"{k}={v} "
|
|
return command_prefix
|
|
|
|
def _start_worker_service(self):
|
|
"""
|
|
start gpu worker service
|
|
|
|
"""
|
|
log_dir = os.getenv("FD_LOG_DIR", default="log")
|
|
command_prefix = self._setting_environ_variables()
|
|
current_file_path = os.path.abspath(__file__)
|
|
current_dir_path = os.path.split(current_file_path)[0]
|
|
# TODO
|
|
uncache_worker_stdout = "" if os.getenv("UNCACHE_WORKER_STDOUT", "0") == 1 else "-u"
|
|
pd_cmd = f"{command_prefix} {sys.executable} {uncache_worker_stdout} -m paddle.distributed.launch"
|
|
pd_cmd = pd_cmd + f" --log_dir {log_dir}"
|
|
|
|
worker_path = "../worker/worker_process.py"
|
|
py_script = os.path.join(current_dir_path, worker_path)
|
|
|
|
ori_vocab_size = (
|
|
len(self.data_processor.tokenizer.sp_model)
|
|
if hasattr(self.data_processor.tokenizer, "sp_model")
|
|
else len(self.data_processor.tokenizer.vocab)
|
|
)
|
|
|
|
ports = ",".join(self.cfg.parallel_config.engine_worker_queue_port)
|
|
ips = None
|
|
if self.cfg.ips is not None:
|
|
ips = ",".join(self.cfg.ips)
|
|
arguments = (
|
|
f" --devices {self.cfg.device_ids} {py_script}"
|
|
f" --max_num_seqs {self.cfg.scheduler_config.max_num_seqs} --max_model_len {self.cfg.max_model_len}"
|
|
f" --gpu_memory_utilization {self.cfg.cache_config.gpu_memory_utilization}"
|
|
f" --model {self.cfg.model_config.model!s}"
|
|
f" --device_ids {self.cfg.device_ids}"
|
|
f" --tensor_parallel_size {self.cfg.parallel_config.tensor_parallel_size}"
|
|
f" --engine_worker_queue_port {ports}"
|
|
f" --pod_ip {self.cfg.master_ip}"
|
|
f" --total_block_num {self.cfg.cache_config.total_block_num}"
|
|
f" --block_size {self.cfg.cache_config.block_size}"
|
|
f" --enc_dec_block_num {self.cfg.cache_config.enc_dec_block_num}"
|
|
f" --eos_tokens_lens {self.data_processor.eos_token_id_len}"
|
|
f" --pad_token_id {self.data_processor.pad_token_id}"
|
|
f" --engine_pid {self.cfg.parallel_config.engine_worker_queue_port[0]}"
|
|
f" --max_num_batched_tokens {self.cfg.scheduler_config.max_num_batched_tokens}"
|
|
f" --splitwise_role {self.cfg.scheduler_config.splitwise_role}"
|
|
f" --kv_cache_ratio {self.cfg.cache_config.kv_cache_ratio}"
|
|
f" --expert_parallel_size {self.cfg.parallel_config.expert_parallel_size}"
|
|
f" --data_parallel_size {self.cfg.parallel_config.data_parallel_size}"
|
|
f" --quantization '{json.dumps(self.cfg.model_config.quantization)}'"
|
|
f" --ori_vocab_size {ori_vocab_size}"
|
|
f" --speculative_config '{self.cfg.speculative_config.to_json_string()}'"
|
|
f" --graph_optimization_config '{self.cfg.graph_opt_config.to_json_string()}'"
|
|
f" --guided_decoding_backend {self.cfg.guided_decoding_backend}"
|
|
f" --load_strategy {self.cfg.load_config.load_strategy}"
|
|
f" --early_stop_config '{self.cfg.early_stop_config.to_json_string()}'"
|
|
f" --reasoning_parser {self.cfg.reasoning_parser}"
|
|
f" --load_choices {self.cfg.load_config.load_choices}"
|
|
f" --plas_attention_config '{self.cfg.plas_attention_config.to_json_string()}'"
|
|
f" --ips {ips}"
|
|
f" --cache-transfer-protocol {self.cfg.cache_config.cache_transfer_protocol}"
|
|
f" --runner {self.cfg.model_config.runner}"
|
|
f" --convert {self.cfg.model_config.convert}"
|
|
f" --override-pooler-config {self.cfg.model_config.override_pooler_config}"
|
|
)
|
|
|
|
worker_append_flag = {
|
|
"enable_expert_parallel": self.cfg.parallel_config.enable_expert_parallel,
|
|
"enable_prefix_caching": self.cfg.cache_config.enable_prefix_caching,
|
|
"enable_chunked_prefill": self.cfg.cache_config.enable_chunked_prefill,
|
|
"do_profile": self.do_profile,
|
|
"dynamic_load_weight": self.cfg.load_config.dynamic_load_weight,
|
|
"disable_any_whitespace": self.cfg.disable_any_whitespace,
|
|
"disable_custom_all_reduce": self.cfg.parallel_config.disable_custom_all_reduce,
|
|
"enable_logprob": self.cfg.model_config.enable_logprob,
|
|
"lm_head_fp32": self.cfg.model_config.lm_head_fp32,
|
|
}
|
|
for worker_flag, value in worker_append_flag.items():
|
|
if value:
|
|
arguments = arguments + f" --{worker_flag}"
|
|
if self.cfg.nnode > 1:
|
|
pd_cmd = pd_cmd + f" --ips {ips} --nnodes {len(self.cfg.ips)}"
|
|
pd_cmd = pd_cmd + arguments + f" 2>{log_dir}/launch_worker.log"
|
|
llm_logger.info(f"Launch worker service command: {pd_cmd}")
|
|
p = subprocess.Popen(
|
|
pd_cmd,
|
|
stdout=subprocess.PIPE,
|
|
shell=True,
|
|
preexec_fn=os.setsid,
|
|
)
|
|
return p
|
|
|
|
def _format_and_add_data(self, prompts: dict):
|
|
|
|
if "request_id" in prompts:
|
|
prompts["request_id"] = prompts["request_id"]
|
|
|
|
if "request_id" not in prompts:
|
|
request_id = str(uuid.uuid4())
|
|
prompts["request_id"] = request_id
|
|
query_list = []
|
|
|
|
if "context" in prompts:
|
|
for item in prompts["context"]:
|
|
if item["role"] == "system":
|
|
prompts["system"] = item["utterance"]
|
|
elif item["role"] in ["user", "assistant"]:
|
|
query_list.append(item["utterance"])
|
|
prompts["prompt"] = query_list
|
|
|
|
if "max_tokens" not in prompts:
|
|
prompts["max_tokens"] = self.cfg.max_model_len
|
|
|
|
self.add_requests(prompts)
|
|
return prompts["request_id"]
|
|
|
|
def generate(self, prompts, stream):
|
|
"""
|
|
Generates a response based on the given prompt using the model.
|
|
|
|
Args:
|
|
prompts (dict): The prompt to use for generating the response.
|
|
stream (bool): Whether to stream the output or wait until completion.
|
|
|
|
Yields:
|
|
dict: The generated response.
|
|
"""
|
|
llm_logger.info(f"Starting generation for prompt: {prompts}")
|
|
try:
|
|
req_id = self._format_and_add_data(prompts)
|
|
except Exception as e:
|
|
llm_logger.error(f"Error happened while adding request, details={e}, {str(traceback.format_exc())}")
|
|
raise EngineError(str(e), error_code=400)
|
|
|
|
# Get the result of the current request
|
|
for result in self._get_generated_tokens(req_id):
|
|
is_end = result.finished
|
|
if stream and not is_end:
|
|
processed = self.data_processor.process_response(result)
|
|
if processed is None:
|
|
continue
|
|
output = processed.to_dict()
|
|
yield output
|
|
|
|
# Exit loop if termination condition is met
|
|
if is_end:
|
|
processed = self.data_processor.process_response(result)
|
|
output = processed.to_dict()
|
|
llm_logger.debug(f"Generate result: {output}")
|
|
if not stream:
|
|
yield output
|
|
else:
|
|
output["outputs"]["text"] = ""
|
|
output["outputs"]["reasoning_content"] = ""
|
|
yield output
|
|
|
|
self.engine.check_and_free_block_tables()
|
|
|
|
def _stop_profile(self):
|
|
"""
|
|
Stop profiling of the model server and reset variables.
|
|
"""
|
|
self.do_profile = 0
|
|
while self.get_profile_block_num_signal.value[0] == 0:
|
|
time.sleep(1)
|
|
num_gpu_blocks = self.get_profile_block_num_signal.value[0]
|
|
self.cfg.cache_config.reset(num_gpu_blocks)
|
|
self.engine.resource_manager.reset_cache_config(self.cfg.cache_config)
|
|
if self.cfg.cache_config.enable_prefix_caching or self.cfg.scheduler_config.splitwise_role != "mixed":
|
|
device_ids = self.cfg.device_ids.split(",")
|
|
self.cache_manager_processes = self.engine.start_cache_service(device_ids, self.ipc_signal_suffix)
|
|
|
|
def check_health(self, time_interval_threashold=30):
|
|
"""
|
|
Check the health of the model server by checking whether all workers are alive.
|
|
|
|
"""
|
|
if self.engine.worker_healthy_live_signal.value[0]:
|
|
elapsed_time = time.time() - self.engine.worker_healthy_live_signal.value[0]
|
|
if elapsed_time > time_interval_threashold:
|
|
return False, "Worker Service Not Healthy"
|
|
|
|
return True, ""
|
|
|
|
def launch_components(self):
|
|
if self.cfg.scheduler_config.splitwise_role != "mixed":
|
|
# 单机逻辑
|
|
self.engine.engine_worker_queue.available_prefill_instances.put(1)
|
|
self.splitwise_receive_thread = threading.Thread(
|
|
target=self.engine.split_connector.start_receiver, args=()
|
|
)
|
|
self.splitwise_receive_thread.daemon = True
|
|
self.splitwise_receive_thread.start()
|
|
|
|
self.cfg.init_cache_info()
|
|
|
|
role = self.cfg.scheduler_config.splitwise_role
|
|
host_ip = self.cfg.host_ip
|
|
disaggregate = self.cfg.disaggregate_info
|
|
if self.cfg.scheduler_config.name == "splitwise":
|
|
self.engine.scheduler.start(role, host_ip, disaggregate)
|
|
elif self.cfg.scheduler_config.name == "dp":
|
|
request_queues_for_dp_ipc = []
|
|
result_queue_for_dp_ipc = multiprocessing.Queue()
|
|
for i in range(self.cfg.parallel_config.data_parallel_size):
|
|
request_queues_for_dp_ipc.append(multiprocessing.Queue())
|
|
self.engine.scheduler.start(
|
|
self.cfg.node_rank * self.cfg.worker_num_per_node, request_queues_for_dp_ipc, result_queue_for_dp_ipc
|
|
)
|
|
|
|
if not envs.FD_ENABLE_MULTI_API_SERVER:
|
|
if self.cfg.parallel_config.enable_expert_parallel and self.cfg.parallel_config.data_parallel_size > 1:
|
|
self.launched_expert_service_signal.value[0] = 1
|
|
self.dp_processed = []
|
|
self.dp_engine_worker_queue_server = []
|
|
for i in range(
|
|
1,
|
|
self.cfg.parallel_config.data_parallel_size // self.cfg.nnode,
|
|
):
|
|
address = (
|
|
self.cfg.master_ip,
|
|
int(self.cfg.parallel_config.engine_worker_queue_port[i]),
|
|
)
|
|
llm_logger.info(f"dp start queue service {address}")
|
|
self.dp_engine_worker_queue_server.append(
|
|
EngineWorkerQueue(
|
|
address=address,
|
|
is_server=True,
|
|
num_client=self.cfg.parallel_config.tensor_parallel_size,
|
|
local_data_parallel_size=self.cfg.parallel_config.data_parallel_size,
|
|
)
|
|
)
|
|
self.dp_processed.append(
|
|
multiprocessing.Process(
|
|
target=start_data_parallel_service,
|
|
args=(
|
|
self.cfg,
|
|
i,
|
|
None,
|
|
request_queues_for_dp_ipc,
|
|
result_queue_for_dp_ipc,
|
|
),
|
|
)
|
|
)
|
|
llm_logger.info(
|
|
f"Engine is initialized successfully with {self.cfg.parallel_config.tensor_parallel_size}"
|
|
+ f" data parallel id {i}"
|
|
)
|
|
self.dp_processed[-1].start()
|
|
while self.launched_expert_service_signal.value[i] == 0:
|
|
time.sleep(1)
|
|
|
|
def check_worker_initialize_status(self):
|
|
"""
|
|
Check the initlialize status of workers by stdout logging
|
|
"""
|
|
|
|
def detect_thread():
|
|
for line in self.worker_proc.stdout:
|
|
line = line.decode("utf-8", errors="ignore")
|
|
if self.worker_init_status.get("finished", False):
|
|
break
|
|
if match := re.search(
|
|
r"Loading (?:fastsafetensors |safetensors )?checkpoint shards:\s*(\d+)",
|
|
line,
|
|
):
|
|
self.worker_init_status["weight_loadding"] = eval(match.group(1)) * 1.0 / 100
|
|
elif (match := re.search(r"Start load layer (\d+)", line)) or (
|
|
match := re.search(r"set state for layer (\d+)", line)
|
|
):
|
|
progress = eval(match.group(1)) * 1.0 / self.cfg.model_config.num_hidden_layers
|
|
self.worker_init_status["layer_loadding"] = progress
|
|
if self.worker_init_status["layer_loadding"] == self.cfg.model_config.num_hidden_layers - 1:
|
|
self.worker_init_status["finished"] = True
|
|
|
|
self.checking_worker_status_thread = threading.Thread(target=detect_thread, daemon=True)
|
|
self.checking_worker_status_thread.start()
|
|
|
|
# display weight loadding progress
|
|
with tqdm(total=100, desc="Loading Weights") as pbar:
|
|
progress = 0
|
|
while progress < 100:
|
|
progress = int(self.worker_init_status.get("weight_loadding", 0) * 100)
|
|
if self.worker_init_status.get("layer_loadding", 0) > 0 or self._worker_processes_ready():
|
|
progress = 100
|
|
pbar.update(progress - pbar.n)
|
|
pbar.refresh()
|
|
time.sleep(0.5)
|
|
if self.worker_proc.poll() is not None:
|
|
return False
|
|
|
|
# display layer loadding progress
|
|
with tqdm(total=100, desc="Loading Layers") as pbar:
|
|
progress = 0
|
|
while progress < 100:
|
|
progress = int(self.worker_init_status.get("layer_loadding", 0) * 100)
|
|
if self._worker_processes_ready():
|
|
progress = 100
|
|
pbar.update(progress - pbar.n)
|
|
pbar.refresh()
|
|
time.sleep(0.5)
|
|
if self.worker_proc.poll() is not None:
|
|
return False
|
|
|
|
self.worker_init_status["finished"] = True
|
|
try:
|
|
self.checking_worker_status_thread.join(timeout=1)
|
|
except Exception:
|
|
pass
|
|
return True
|