Files
FastDeploy/fastdeploy/cache_manager/cache_transfer_manager.py
chenjian 918ccdb123 [Feature] Support pd ep deployment with yiyan adapter (#4029)
* [Feature] Support mixed deployment with yiyan adapter in release2.2

* fix metrics

* add unit test

* add unit test

* add unit test

* Support pd ep deployment with yiyan adapter

* Support pd ep deployment with yiyan adapter

* refactor cache messager

* support scheduler v1 in PD

* suppport pd v1 + chunk prefill

* suppport pd v1 + chunk prefill

* add eplb

* support eplb

* support eplb

* support eplb

* support v1

* fix

* fix

* fix bug

* remove eplb support

* support prefix cache in P

* fix bug

* fix bug

* support one stop in V1

* fix bug

* fix ci

* fix ci

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
2025-09-22 16:41:38 +08:00

415 lines
15 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import argparse
import concurrent.futures
import json
import queue
import time
import traceback
import numpy as np
import paddle
from fastdeploy.cache_manager.cache_data import CacheStatus
from fastdeploy.config import SpeculativeConfig
from fastdeploy.inter_communicator import EngineCacheQueue, IPCSignal
from fastdeploy.model_executor.ops.gpu import (
cuda_host_alloc,
share_external_data,
swap_cache_all_layers,
)
from fastdeploy.utils import get_logger
def parse_args():
"""
从命令行解析参数
"""
parser = argparse.ArgumentParser("Cache transfer manager")
parser.add_argument(
"--splitwise_role",
type=str,
default="mixed",
help="splitwise role, can be decode, prefill or mixed",
)
parser.add_argument("--rank", type=int, default=0, help="current rank")
parser.add_argument("--device_id", type=int, default=0, help="device id")
parser.add_argument("--num_layers", type=int, default=1, help="model num layers")
parser.add_argument("--head_dim", type=int, default=1, help="model head dim")
parser.add_argument("--kv_num_head", type=int, default=1, help="model kv num head")
parser.add_argument("--rdma_port", type=str, default="", help="rmda port")
parser.add_argument("--mp_num", type=int, default=1, help="number of model parallel")
parser.add_argument(
"--protocol",
type=str,
default="ipc",
help="cache transfer protocol, only support ipc now",
)
parser.add_argument("--enable_splitwise", type=int, default=0, help="enable splitwise ")
parser.add_argument("--cache_queue_port", type=int, default=9923, help="cache queue port")
parser.add_argument("--pod_ip", type=str, default="0.0.0.0", help="pod ip")
parser.add_argument(
"--engine_worker_queue_port",
type=int,
default=9923,
help="engine worker queue port",
)
parser.add_argument("--engine_pid", type=str, default=None, help="engine pid")
parser.add_argument("--num_gpu_blocks", type=int, default=1, help="gpu cache block number")
parser.add_argument("--num_cpu_blocks", type=int, default=4, help="cpu cache block number")
parser.add_argument("--block_size", type=int, default=64, help="cache block size(tokens)")
parser.add_argument(
"--bytes_per_layer_per_block",
type=int,
default=1024,
help="per layer per block bytes",
)
parser.add_argument(
"--cache_dtype",
type=str,
default="bfloat16",
choices=["uint8", "bfloat16"],
help="cache dtype",
)
parser.add_argument(
"--speculative_config",
type=json.loads,
default="{}",
help="speculative config",
)
parser.add_argument("--local_data_parallel_id", type=int, default=0)
args = parser.parse_args()
return args
class CacheTransferManager:
"""
管理CPU和GPU之间缓存的交换传输
"""
def __init__(self, args):
"""
初始化CacheTransferManager
"""
device = args.device_id
rank = args.rank
paddle.set_device(f"gpu:{device}")
self.gpu_cache_kvs = {}
self.cpu_cache_kvs = {}
self.gpu_cache_k_tensors = []
self.gpu_cache_v_tensors = []
self.speculative_config = SpeculativeConfig(args.speculative_config)
self.num_extra_layers = self.speculative_config.num_extra_cache_layer
self.num_extra_layer_gpu_blocks = int(args.num_gpu_blocks * self.speculative_config.num_gpu_block_expand_ratio)
self.swap_to_cpu_thread_pool = concurrent.futures.ThreadPoolExecutor(max_workers=1)
self.swap_to_gpu_thread_pool = concurrent.futures.ThreadPoolExecutor(max_workers=1)
self.transfer_task_queue = queue.Queue() # 用来接收传输任务
self.tansfer_done_queue = queue.Queue() # 用来告知任务执行完毕
self.n_ranks = args.mp_num
self.rank = rank
self.device = device
address = (args.pod_ip, args.cache_queue_port)
self.cache_task_queue = EngineCacheQueue(
address=address,
is_server=False,
num_client=args.mp_num,
client_id=rank,
local_data_parallel_id=args.local_data_parallel_id,
)
self.num_cpu_blocks = args.num_cpu_blocks
cache_type = args.cache_dtype
cache_shape = [
args.num_gpu_blocks,
args.kv_num_head,
args.block_size,
args.head_dim,
]
for i in range(args.num_layers + self.num_extra_layers):
num_gpu_blocks = args.num_gpu_blocks if i < args.num_layers else self.num_extra_layer_gpu_blocks
cache_shape[0] = num_gpu_blocks
key_name = f"key_caches_{i}_rank{rank}.device{device}"
value_name = f"value_caches_{i}_rank{rank}.device{device}"
key_cache = paddle.empty(shape=[], dtype=cache_type)
value_cache = paddle.empty(shape=[], dtype=cache_type)
key_cache = share_external_data(key_cache, key_name, cache_shape)
value_cache = share_external_data(value_cache, value_name, cache_shape)
self.gpu_cache_kvs[key_name] = key_cache
self.gpu_cache_kvs[value_name] = value_cache
self.gpu_cache_k_tensors.append(self.gpu_cache_kvs[key_name])
self.gpu_cache_v_tensors.append(self.gpu_cache_kvs[value_name])
cache_kv_size_byte = sum([tmp.numel() * 1 for key, tmp in self.gpu_cache_kvs.items()])
logger.info(f"device :{self.device}")
logger.info(f"cache_kv_size_byte : {cache_kv_size_byte}")
logger.info(f"done init cache (full) gmem alloc : {paddle.device.cuda.memory_allocated()}")
paddle.set_device("cpu")
self.k_dst_ptrs = []
self.v_dst_ptrs = []
for i in range(args.num_layers + self.num_extra_layers):
self.cpu_cache_kvs[f"key_caches_{i}_rank{rank}"] = cuda_host_alloc(
args.num_cpu_blocks * args.bytes_per_layer_per_block
)
self.k_dst_ptrs.append(self.cpu_cache_kvs[f"key_caches_{i}_rank{rank}"])
self.cpu_cache_kvs[f"value_caches_{i}_rank{rank}"] = cuda_host_alloc(
args.num_cpu_blocks * args.bytes_per_layer_per_block
)
self.v_dst_ptrs.append(self.cpu_cache_kvs[f"value_caches_{i}_rank{rank}"])
cache_ready_signal_data = np.zeros(shape=[args.mp_num], dtype=np.int32)
self.cache_ready_signal = IPCSignal(
name="cache_ready_signal",
array=cache_ready_signal_data,
dtype=np.int32,
suffix=args.engine_pid,
create=False,
)
self.cache_ready_signal.value[self.rank] = 1
cache_task_broadcast_data = np.zeros(shape=[1], dtype=np.int32)
self.cache_task_broadcast_signal = IPCSignal(
name="cache_task_broadcast_signal",
array=cache_task_broadcast_data,
dtype=np.int32,
suffix=args.engine_pid,
create=False,
)
def _do_swap_to_cpu_task(
self,
swap_node_ids,
gpu_block_id,
cpu_block_id,
event_type,
transfer_task_id,
):
"""
swap cache GPU->CPU
"""
self.cache_task_queue.swap_to_cpu_barrier1.wait()
if self.rank == 0:
self.cache_task_queue.swap_to_cpu_barrier1.reset()
result = self._transfer_data(
swap_node_ids,
gpu_block_id,
cpu_block_id,
event_type,
transfer_task_id,
)
self.cache_task_queue.swap_to_cpu_barrier2.wait()
if self.rank == 0:
self.cache_task_queue.swap_to_cpu_barrier2.reset()
self.cache_task_queue.put_transfer_done_signal(result)
logger.debug(f"_do_swap_to_cpu_task: put_transfer_done_signal {result}")
logger.info(f"_do_swap_to_cpu_task: put_transfer_done_signal for transfer_task_id {transfer_task_id}")
def _do_swap_to_gpu_task(
self,
swap_node_ids,
gpu_block_id,
cpu_block_id,
event_type,
transfer_task_id,
):
"""
swap cache CPU->GPU
"""
self.cache_task_queue.swap_to_gpu_barrier1.wait()
if self.rank == 0:
self.cache_task_queue.swap_to_gpu_barrier1.reset()
result = self._transfer_data(
swap_node_ids,
gpu_block_id,
cpu_block_id,
event_type,
transfer_task_id,
)
self.cache_task_queue.swap_to_gpu_barrier2.wait()
if self.rank == 0:
self.cache_task_queue.swap_to_gpu_barrier2.reset()
self.cache_task_queue.put_transfer_done_signal(result)
logger.debug(f"_do_swap_to_gpu_task: put_transfer_done_signal {result}")
logger.info(f"_do_swap_to_gpu_task: put_transfer_done_signal for transfer_task_id {transfer_task_id}")
def do_data_transfer(self):
"""
do data transfer task
"""
while True:
try:
if self.rank == 0:
if not self.cache_task_queue.empty():
self.cache_task_broadcast_signal.value[0] = 1
if self.n_ranks > 1:
self.cache_task_queue.barrier1.wait()
if self.rank == 0:
self.cache_task_queue.barrier1.reset()
if self.cache_task_broadcast_signal.value[0] == 1:
data, read_finish = self.cache_task_queue.get_transfer_task()
logger.debug(f"transfer data: get_transfer_task {data}")
if read_finish:
self.cache_task_broadcast_signal.value[0] = 0
(
swap_node_ids,
gpu_block_id,
cpu_block_id,
event_type,
transfer_task_id,
) = data
if event_type.value == CacheStatus.SWAP2CPU.value:
self.swap_to_cpu_thread_pool.submit(
self._do_swap_to_cpu_task,
swap_node_ids,
gpu_block_id,
cpu_block_id,
event_type,
transfer_task_id,
)
else:
self.swap_to_gpu_thread_pool.submit(
self._do_swap_to_gpu_task,
swap_node_ids,
gpu_block_id,
cpu_block_id,
event_type,
transfer_task_id,
)
else:
if self.n_ranks > 1:
self.cache_task_queue.barrier2.wait()
if self.rank == 0:
self.cache_task_queue.barrier2.reset()
continue
if self.n_ranks > 1:
self.cache_task_queue.barrier3.wait()
if self.rank == 0:
self.cache_task_queue.barrier3.reset()
except Exception as e:
logger.info(f"do_data_transfer: error: {e}, {str(traceback.format_exc())}")
def _transfer_data(
self,
swap_node_ids,
task_gpu_block_id,
task_cpu_block_id,
event_type,
transfer_task_id,
):
"""
transfer data
task_gpu_block_id format: [[block_id0, [fold_block_id0, fold_block_id1]],
[block_id1, [fold_block_id0, fold_block_id1]], ...]
"""
logger.debug(
f"transfer data: transfer_task_id {transfer_task_id}: swap_node_ids {swap_node_ids}"
+ f"task_gpu_block_id {task_gpu_block_id} task_cpu_block_id {task_cpu_block_id} event_type {event_type}"
)
start_time = time.time()
try:
# transform block id
assert len(task_gpu_block_id) == len(task_cpu_block_id)
gpu_block_ids = task_gpu_block_id
cpu_block_ids = task_cpu_block_id
if event_type.value == CacheStatus.SWAP2CPU.value:
swap_cache_all_layers(
self.gpu_cache_k_tensors,
self.k_dst_ptrs,
self.num_cpu_blocks,
gpu_block_ids,
cpu_block_ids,
self.device,
0,
)
swap_cache_all_layers(
self.gpu_cache_v_tensors,
self.v_dst_ptrs,
self.num_cpu_blocks,
gpu_block_ids,
cpu_block_ids,
self.device,
0,
)
elif event_type.value == CacheStatus.SWAP2GPU.value:
swap_cache_all_layers(
self.gpu_cache_k_tensors,
self.k_dst_ptrs,
self.num_cpu_blocks,
gpu_block_ids,
cpu_block_ids,
self.device,
1,
)
swap_cache_all_layers(
self.gpu_cache_v_tensors,
self.v_dst_ptrs,
self.num_cpu_blocks,
gpu_block_ids,
cpu_block_ids,
self.device,
1,
)
else:
logger.warning(
f"transfer data: Get unexpected event type {event_type}, only SWAP2CPU and SWAP2GPU supported"
)
except Exception as e:
logger.error(f"transfer data: error: {e}")
raise e
end_time = time.time()
elasped_time = end_time - start_time
logger.info(
f"transfer data: transfer_task_id {transfer_task_id} event_type {event_type}: "
+ f"transfer {len(gpu_block_ids)} blocks done elapsed_time {elasped_time:.4f}"
)
return (
swap_node_ids,
task_gpu_block_id,
task_cpu_block_id,
event_type,
transfer_task_id,
)
def main():
"""
启动cache manager
"""
cache_manager = CacheTransferManager(args)
cache_manager.do_data_transfer()
if __name__ == "__main__":
args = parse_args()
rank_id = args.rank + args.local_data_parallel_id * args.mp_num
logger = get_logger("cache_transfer_manager", f"cache_transfer_manager_rank{rank_id}.log")
paddle.set_device(f"gpu:{args.device_id}")
main()