Files
FastDeploy/fastdeploy/cache_manager/cache_messager.py
chenjian 918ccdb123 [Feature] Support pd ep deployment with yiyan adapter (#4029)
* [Feature] Support mixed deployment with yiyan adapter in release2.2

* fix metrics

* add unit test

* add unit test

* add unit test

* Support pd ep deployment with yiyan adapter

* Support pd ep deployment with yiyan adapter

* refactor cache messager

* support scheduler v1 in PD

* suppport pd v1 + chunk prefill

* suppport pd v1 + chunk prefill

* add eplb

* support eplb

* support eplb

* support eplb

* support v1

* fix

* fix

* fix bug

* remove eplb support

* support prefix cache in P

* fix bug

* fix bug

* support one stop in V1

* fix bug

* fix ci

* fix ci

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
2025-09-22 16:41:38 +08:00

854 lines
40 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import argparse
import json
import math
import queue
import threading
import time
import traceback
import numpy as np
import paddle
from fastdeploy.cache_manager.transfer_factory import IPCCommManager, RDMACommManager
from fastdeploy.config import SpeculativeConfig
from fastdeploy.inter_communicator import (
EngineWorkerQueue,
IPCSignal,
shared_memory_exists,
)
from fastdeploy.model_executor.ops.gpu import get_output_kv_signal, set_data_ipc
from fastdeploy.utils import envs, get_logger
logger = get_logger("cache_messager", "cache_messager.log")
def parse_args():
"""
从命令行解析参数
"""
parser = argparse.ArgumentParser("Cache Messager")
parser.add_argument(
"--splitwise_role",
type=str,
default="mixed",
help="splitwise role, can be decode, prefill or mixed",
)
parser.add_argument("--rank", type=int, default=0, help="current rank")
parser.add_argument("--device_id", type=int, default=0, help="device id")
parser.add_argument("--num_layers", type=int, default=1, help="model num layers")
parser.add_argument("--head_dim", type=int, default=1, help="model head dim")
parser.add_argument("--kv_num_head", type=int, default=1, help="model kv num head")
parser.add_argument("--rdma_port", type=str, default="", help="rmda port")
parser.add_argument("--mp_num", type=int, default=1, help="number of model parallel")
parser.add_argument("--engine_pid", type=str, default=None, help="engine pid")
parser.add_argument(
"--protocol",
type=str,
default="ipc",
help="cache transfer protocol, only surport ipc now",
)
parser.add_argument("--pod_ip", type=str, default="0.0.0.0", help="pod ip")
parser.add_argument("--cache_queue_port", type=int, default=9924, help="cache queue port")
parser.add_argument(
"--engine_worker_queue_port",
type=int,
default=9923,
help="engine worker queue port",
)
parser.add_argument("--num_gpu_blocks", type=int, default=1, help="gpu cache block number")
parser.add_argument("--block_size", type=int, default=64, help="cache block size(tokens)")
parser.add_argument(
"--cache_dtype",
type=str,
default="bfloat16",
choices=["uint8", "bfloat16"],
help="cache dtype",
)
parser.add_argument(
"--speculative_config",
type=json.loads,
default="{}",
help="speculative config",
)
parser.add_argument("--local_data_parallel_id", type=int, default=0)
args = parser.parse_args()
return args
class CacheMessager:
"""
CacheMessager is used to send the cache data between the engine worker and the cache server.
"""
def __init__(
self,
splitwise_role,
transfer_protocol,
pod_ip,
engine_worker_queue_port,
local_data_parallel_id,
gpu_cache_kvs,
rank,
nranks,
num_layers,
gpu_id=0,
rdma_port=None,
):
"""
Initialize the CacheMessager object.
Args:
splitwise_role (str): splitwise_role only can be 'prefill' or 'decode'.
transfer_protocol (str): support ipc and rdma
engine_worker_queue_port (int): engine_worker_queue port
gpu_cache_kvs (dict): GPU kv cache
rank (int): current rank
nranks (int): global rank number
num_layers (int): model layer number
gpu_id (int, optional): GPU ID
rdma_port (int, optional): RDMA port
Returns:
None
"""
self.splitwise_role = splitwise_role
self.gpu_cache_kvs = gpu_cache_kvs
self.rank = rank
self.nranks = nranks
address = (pod_ip, engine_worker_queue_port)
self.engine_worker_queue = EngineWorkerQueue(
address=address,
is_server=False,
num_client=self.nranks,
client_id=self.rank,
local_data_parallel_id=local_data_parallel_id,
)
transfer_protocol = transfer_protocol.split(",")
logger.info(f"splitwise role: {splitwise_role}, {transfer_protocol}" f"rank: {rank}")
# 1. initialize the cache_k_ptr_list and cache_v_ptr_list
self.num_layers = num_layers
cache_k_ptr_list = []
cache_v_ptr_list = []
cache_k = []
cache_v = []
self.messager = {}
for layer_idx in range(self.num_layers):
key_cache = self.gpu_cache_kvs[f"key_caches_{layer_idx}_rank{self.rank}_device{gpu_id}"]
val_cache = self.gpu_cache_kvs[f"value_caches_{layer_idx}_rank{self.rank}_device{gpu_id}"]
cache_k.append(key_cache)
cache_v.append(val_cache)
cache_k_ptr_list.append(key_cache.data_ptr())
cache_v_ptr_list.append(val_cache.data_ptr())
cache_k_ptr_list = np.array(cache_k_ptr_list)
cache_v_ptr_list = np.array(cache_v_ptr_list)
# 2. initialize the block_bytes
cache_shape = key_cache.shape
max_block_num = cache_shape[0]
block_bytes = math.prod(cache_shape[1:])
if key_cache.dtype == paddle.bfloat16:
block_bytes *= 2
logger.info(
f"layers {num_layers} cache_shape: {cache_shape}, max_block_num: {max_block_num}, "
f"block_bytes: {block_bytes}, dtype: {key_cache.dtype}"
)
self.block_bytes = block_bytes
# 3. initialize the messager
for protocol in transfer_protocol:
if protocol == "ipc":
self.messager[protocol] = IPCCommManager(
self.rank,
gpu_id,
cache_k,
cache_v,
)
local_device_id = int(str(cache_k[0].place)[-2])
logger.info(f"done create ipc_comm with local_device_id:{local_device_id}, ")
elif protocol == "rdma":
logger.info(f"splitwise_role rdma: {self.splitwise_role}, rank: {self.rank}, gpu_id: {gpu_id}")
self.messager[protocol] = RDMACommManager(
splitwise_role,
rank,
gpu_id,
cache_k_ptr_list,
cache_v_ptr_list,
max_block_num,
block_bytes,
rdma_port,
)
self.gpu_id = gpu_id
self.cache_info = dict()
self.rank_id = self.rank + local_data_parallel_id * self.nranks
if self.splitwise_role != "mixed":
connect_rdma_thread = threading.Thread(target=self._handle_connect_task)
connect_rdma_thread.daemon = True
connect_rdma_thread.start()
logger.info(f"cache messager init finished, use {transfer_protocol}")
def prefill_layerwise_send_cache_thread(self):
"""
layerwise_send_cache_thread:
send cache to other instance
"""
try:
prefilled_step_idx_data = np.zeros(shape=[1], dtype=np.int32)
prefilled_layer_idx_data = np.zeros(shape=[1], dtype=np.int32)
prefilled_layer_name = f"splitwise_complete_prefilled_step_{self.rank_id}.{self.gpu_id}"
prefilled_step_name = f"splitwise_complete_prefilled_step_{self.rank_id}.{self.gpu_id}"
step_shm_value = IPCSignal(
name=f"splitwise_complete_prefilled_step_{self.rank_id}",
array=prefilled_step_idx_data,
dtype=np.int32,
suffix=self.gpu_id,
create=not shared_memory_exists(prefilled_step_name),
)
layer_shm_value = IPCSignal(
name=f"splitwise_complete_prefilled_layer_{self.rank_id}",
array=prefilled_layer_idx_data,
dtype=np.int32,
suffix=self.gpu_id,
create=not shared_memory_exists(prefilled_layer_name),
)
logger.info(f"splitwise_complete_prefilled_step_{self.rank_id}, gpu_id: {self.gpu_id}")
step_shm_value.value[0] = -1
layer_shm_value.value[0] = -1
self.last_step_idx = -1
self.last_layer_idx = -1 # int32
max_step_idx = 100003
engine_recycled_count = 0
while True:
cache_info = self.engine_worker_queue.get_cache_info()
if cache_info:
logger.debug(f"cache info {cache_info}")
for info in cache_info:
if info["request_id"] in self.cache_info:
self.cache_info[info["request_id"]].update(info)
current_info = self.cache_info[info["request_id"]]
if "dest_block_ids" in current_info and "src_block_ids" in current_info:
current_src_blocks = current_info["src_block_ids"][
-len(current_info["dest_block_ids"]) :
]
current_info["src_block_ids"] = current_src_blocks
current_info["status"] = "init"
logger.info(f"start cache_infos: {current_info}")
self.cache_info[info["request_id"]] = current_info
else:
self.cache_info[info["request_id"]] = info
prefilled_layer_idx = layer_shm_value.value[0]
prefilled_step_idx = step_shm_value.value[0]
logger.info(f"prefilled_layer_idx: {prefilled_layer_idx}, prefilled_step_idx: {prefilled_step_idx}")
if prefilled_layer_idx == self.num_layers - 1:
time.sleep(0.001)
prefilled_layer_idx = layer_shm_value.value[0]
prefilled_step_idx = step_shm_value.value[0]
if prefilled_step_idx == -1:
time.sleep(0.001)
continue
if not self.cache_info:
time.sleep(0.001)
continue
if self.last_step_idx > prefilled_step_idx:
engine_recycled_count += 1
self.last_step_idx = prefilled_step_idx # only copy value read from shm memory
prefilled_step_idx = (
prefilled_step_idx + max_step_idx * engine_recycled_count
) # remap prefilled_step_idx for comparison
logger.debug(
f"prefilled_layer_idx: {prefilled_layer_idx}, prefilled_step_idx in shm: {self.last_step_idx},"
f"prefilled_step_idx: {prefilled_step_idx} engine_recycled_count {engine_recycled_count}"
)
for req_id, item in list(self.cache_info.items()):
if "status" not in item:
continue
if "layer_idx" not in item:
item["layer_idx"] = 0
if item["status"] == "error":
del self.cache_info[req_id]
continue
if item["current_id"] > prefilled_step_idx:
continue
current_transfer_protocol = item["transfer_protocol"]
if item["transfer_protocol"] == "rdma":
target_ip = item["ip"]
target_id = int(item["rdma_ports"][self.rank])
status = self.messager[current_transfer_protocol].connect(target_ip, target_id)
if not status:
logger.error(f"connect to {target_ip}:{target_id} failed")
item["status"] = "error"
self.engine_worker_queue.finish_request_barrier.wait()
if self.rank == 0:
self.engine_worker_queue.put_finished_req([(item["request_id"], "connect error")])
continue
elif item["transfer_protocol"] == "ipc":
target_ip = "0.0.0.0"
target_id = int(item["device_ids"][self.rank])
src_block_ids = paddle.to_tensor(item["src_block_ids"], dtype="int32", place="cpu")
dest_block_ids = paddle.to_tensor(item["dest_block_ids"], dtype="int32", place="cpu")
if item["current_id"] < prefilled_step_idx:
current_layer_idx = self.num_layers
else:
current_layer_idx = prefilled_layer_idx + 1
for layer_idx in range(item["layer_idx"], current_layer_idx):
tic = time.time()
return_code = self.messager[current_transfer_protocol].write_cache(
target_ip,
target_id,
src_block_ids,
dest_block_ids,
layer_idx,
)
if return_code != 0:
item["status"] = "error"
self.engine_worker_queue.finish_request_barrier.wait()
if self.rank == 0:
self.engine_worker_queue.put_finished_req([(item["request_id"], "write cache error")])
logger.error(
f"write cache failed, layer_idx: {layer_idx}, "
f"req_id: {item['request_id']}, dest_ip: {target_ip}"
)
break
tok = time.time()
cost_time = tok - tic
block_num = len(src_block_ids)
avg_time_per_block = cost_time * 1000 / block_num # ms
send_cache_speed = block_num * self.block_bytes / 1073741824 / cost_time # GB/s
logger.debug(
f"finish write cache for a layer, {item['request_id']}, {layer_idx}"
f" {current_transfer_protocol}"
f"block_num: {block_num}, send_cache_speed(GB/s): {round(send_cache_speed, 5)},"
f"avg_time per block(ms): {round(avg_time_per_block, 5)}"
)
item["layer_idx"] = current_layer_idx
if item["layer_idx"] == self.num_layers:
if item["transfer_protocol"] == "ipc":
self.messager["ipc"].write_block_by_sync(target_id)
logger.info(f"finish write cache {item['request_id']}")
self.engine_worker_queue.finish_request_barrier.wait()
if self.rank == 0:
# to do: robust in TP: here we assume all status in tp are the same. If wrong, all wrong. If ok, all ok.
self.engine_worker_queue.put_finished_req([(item["request_id"], "finished")])
logger.info(f"put write cache {item['request_id']}")
del self.cache_info[req_id]
self.last_layer_idx = prefilled_layer_idx
except Exception as e:
logger.error(f"prefill layerwise send cache thread has exception: {e}, {str(traceback.format_exc())}")
def _handle_connect_task(self):
while True:
try:
task = self.engine_worker_queue.get_connect_rdma_task()
if task is None:
time.sleep(0.001)
continue
logger.info(f"_handle_connect_task recv task: {task}")
task_id = task["task_id"]
ip, rdma_port = task["ip"], task["rdma_port"]
status = self.messager["rdma"].connect(ip, rdma_port)
if not status:
response = {"task_id": task_id, "success": False}
else:
response = {"task_id": task_id, "success": True}
self.engine_worker_queue.put_connect_rdma_task_response(response)
except Exception as e:
logger.error(f"handle_connect_task has exception: {e}")
class CacheMessagerV1:
"""
CacheMessager is used to send the cache data between the engine worker and the cache server.
"""
def __init__(
self,
splitwise_role,
transfer_protocol,
pod_ip,
engine_worker_queue_port,
local_data_parallel_id,
gpu_cache_kvs,
rank,
nranks,
num_layers,
gpu_id=0,
block_size=64,
rdma_port=None,
):
"""
Initialize the CacheMessager object.
Args:
splitwise_role (str): splitwise_role only can be 'prefill' or 'decode'.
transfer_protocol (str): support ipc and rdma
engine_worker_queue_port (int): engine_worker_queue port
gpu_cache_kvs (dict): GPU kv cache
rank (int): current rank
nranks (int): global rank number
num_layers (int): model layer number
gpu_id (int, optional): GPU ID
rdma_port (int, optional): RDMA port
Returns:
None
"""
self.splitwise_role = splitwise_role
self.gpu_cache_kvs = gpu_cache_kvs
self.rank = rank
self.nranks = nranks
address = (pod_ip, engine_worker_queue_port)
self.engine_worker_queue = EngineWorkerQueue(
address=address,
is_server=False,
num_client=self.nranks,
client_id=self.rank,
local_data_parallel_id=local_data_parallel_id,
)
self.block_size = block_size
transfer_protocol = transfer_protocol.split(",")
logger.info(f"splitwise role: {splitwise_role}, {transfer_protocol}" f"rank: {rank}")
# 1. initialize the cache_k_ptr_list and cache_v_ptr_list
self.num_layers = num_layers
cache_k_ptr_list = []
cache_v_ptr_list = []
cache_k = []
cache_v = []
self.messager = {}
for layer_idx in range(self.num_layers):
key_cache = self.gpu_cache_kvs[f"key_caches_{layer_idx}_rank{self.rank}_device{gpu_id}"]
val_cache = self.gpu_cache_kvs[f"value_caches_{layer_idx}_rank{self.rank}_device{gpu_id}"]
cache_k.append(key_cache)
cache_v.append(val_cache)
cache_k_ptr_list.append(key_cache.data_ptr())
cache_v_ptr_list.append(val_cache.data_ptr())
cache_k_ptr_list = np.array(cache_k_ptr_list)
cache_v_ptr_list = np.array(cache_v_ptr_list)
# 2. initialize the block_bytes
cache_shape = key_cache.shape
max_block_num = cache_shape[0]
block_bytes = math.prod(cache_shape[1:])
if key_cache.dtype == paddle.bfloat16:
block_bytes *= 2
logger.info(
f"layers {num_layers} cache_shape: {cache_shape}, max_block_num: {max_block_num}, "
f"block_bytes: {block_bytes}, dtype: {key_cache.dtype}"
)
self.block_bytes = block_bytes
# 3. initialize the messager
for protocol in transfer_protocol:
if protocol == "ipc":
self.messager[protocol] = IPCCommManager(
self.rank,
gpu_id,
cache_k,
cache_v,
)
local_device_id = int(str(cache_k[0].place)[-2])
logger.info(f"done create ipc_comm with local_device_id:{local_device_id}, ")
elif protocol == "rdma":
logger.info(f"splitwise_role rdma: {self.splitwise_role}, rank: {self.rank}, gpu_id: {gpu_id}")
self.messager[protocol] = RDMACommManager(
splitwise_role,
rank,
gpu_id,
cache_k_ptr_list,
cache_v_ptr_list,
max_block_num,
block_bytes,
rdma_port,
)
self.gpu_id = gpu_id
self.cache_info = dict()
self.rank_id = self.rank + local_data_parallel_id * self.nranks
self.engine_cache_task_thread_lock = threading.Lock()
self.engine_cache_tasks = [dict() for _ in range(512)]
self.idx_cache_task_dict = {}
self.cache_prefilled_engine_ids_queue = queue.Queue() # keep batch slot index for each prefill step
if splitwise_role == "prefill":
consume_signals_thread = threading.Thread(target=self.consume_signals)
consume_signals_thread.daemon = True
consume_signals_thread.start()
add_cache_task_thread = threading.Thread(target=self._add_cache_task_thread)
add_cache_task_thread.daemon = True
add_cache_task_thread.start()
if self.splitwise_role != "mixed":
connect_rdma_thread = threading.Thread(target=self._handle_connect_task)
connect_rdma_thread.daemon = True
connect_rdma_thread.start()
logger.info(f"cache messager init finished, use {transfer_protocol}")
def _add_cache_task_thread(self):
while True:
try:
cache_info = self.engine_worker_queue.get_cache_info()
self.engine_worker_queue.finish_add_cache_task_barrier.wait()
finished_add_cache_task_req_ids = []
if cache_info:
for info in cache_info:
if info["request_id"] in self.cache_info:
self.cache_info[info["request_id"]].update(info)
current_info = self.cache_info[info["request_id"]]
assert "dest_block_ids" in current_info and "src_block_ids" in current_info
finished_add_cache_task_req_ids.append(info["request_id"])
decode_cached_block_num = len(current_info["src_block_ids"]) - len(
current_info["dest_block_ids"]
)
padding_decode_block_ids = [-1 for i in range(decode_cached_block_num)] + current_info[
"dest_block_ids"
]
current_info["dest_block_ids"] = padding_decode_block_ids
current_info["decode_cached_tokens"] = decode_cached_block_num * self.block_size
current_info["sended_layer_id"] = -1
current_info["sended_block_num"] = current_info["decode_cached_tokens"] // self.block_size
current_info["status"] = "init"
logger.info(f"finish add cache task: {current_info}")
self.cache_info[info["request_id"]] = current_info
self.idx_cache_task_dict[current_info["current_id"]] = current_info
else:
self.cache_info[info["request_id"]] = info
if self.rank == 0 and finished_add_cache_task_req_ids:
self.engine_worker_queue.put_finished_add_cache_task_req(finished_add_cache_task_req_ids)
else:
time.sleep(0.001)
except Exception as e:
logger.info(f"add cache task occured error: {e}, {traceback.format_exc()!s}.")
def prefill_layerwise_send_cache_thread(self):
"""
layerwise_send_cache_thread:
send cache to other instance
"""
while True:
try:
engine_indexes = self.cache_prefilled_engine_ids_queue.get()
self.engine_worker_queue.finish_request_barrier.wait()
block_start_end_list = []
current_prefilled_token_num_list = []
for engine_index in engine_indexes:
assert engine_index in self.idx_cache_task_dict
block_id_start = self.idx_cache_task_dict[engine_index]["sended_block_num"]
prefilled_token_num = self.engine_cache_tasks[engine_index]["prefilled_token_num"]
if (
prefilled_token_num == self.idx_cache_task_dict[engine_index]["need_prefill_tokens"]
): # all chunks have been prefilled
block_id_end = len(self.idx_cache_task_dict[engine_index]["src_block_ids"])
else:
block_id_end = prefilled_token_num // self.block_size # [block_id_start, block_id_end)
block_start_end_list.append((block_id_start, block_id_end))
current_prefilled_token_num_list.append(prefilled_token_num)
while True: # from layer0 to last layer
sended_layer_idx = self.idx_cache_task_dict[engine_indexes[0]]["sended_layer_id"]
start_layer_idx = sended_layer_idx + 1
with self.engine_cache_task_thread_lock: # to check end_layer_idx
prefilled_layer_idx = self.engine_cache_tasks[engine_indexes[0]]["prefilled_layer_idx"]
if sended_layer_idx > prefilled_layer_idx: # computation must in next chunk
logger.info(
f"current_prefilled_token_num_list[0] {current_prefilled_token_num_list[0]} prefilled_token_num {self.engine_cache_tasks[engine_indexes[0]]['prefilled_token_num']}"
)
assert (
current_prefilled_token_num_list[0]
< self.engine_cache_tasks[engine_indexes[0]]["prefilled_token_num"]
), "when sended_layer_idx > prefilled_layer_idx, must be in next chunk, but not, sth wrong"
end_layer_idx = self.num_layers - 1 # [start_layer_idx, end_layer_idx)
else:
end_layer_idx = prefilled_layer_idx
if sended_layer_idx == prefilled_layer_idx: # computation not in next layer
time.sleep(0.01)
for layer_idx in range(start_layer_idx, end_layer_idx + 1):
for i, (block_id_start, block_id_end) in enumerate(block_start_end_list):
engine_index = engine_indexes[i]
task = self.idx_cache_task_dict[engine_index]
req_id = task["request_id"]
if (
block_id_start >= block_id_end
): # no blocks need to transfer for this request in this chunk
task["sended_layer_id"] += 1
assert task["sended_layer_id"] == layer_idx
if task["sended_layer_id"] == self.num_layers - 1:
task["sended_layer_id"] = -1
continue
else:
current_transfer_protocol = task["transfer_protocol"]
if task["transfer_protocol"] == "rdma":
target_ip = task["ip"]
target_id = int(task["rdma_ports"][self.rank])
if task["status"] == "error":
continue
status = self.messager[current_transfer_protocol].connect(target_ip, target_id)
if not status:
logger.error(f"connect to {target_ip}:{target_id} failed")
task["status"] = "connection error"
continue
elif task["transfer_protocol"] == "ipc":
target_ip = "0.0.0.0"
target_id = int(task["device_ids"][self.rank])
src_block_ids = task["src_block_ids"][block_id_start:block_id_end]
dest_block_ids = task["dest_block_ids"][block_id_start:block_id_end]
src_block_ids = paddle.to_tensor(src_block_ids, dtype="int32", place="cpu")
dest_block_ids = paddle.to_tensor(dest_block_ids, dtype="int32", place="cpu")
logger.info(
f"start write cache for a layer, {req_id}, {layer_idx}, {target_ip}, {target_id}, block_id_start {block_id_start} block_id_end {block_id_end}"
)
tic = time.time()
return_code = self.messager[current_transfer_protocol].write_cache(
target_ip,
target_id,
src_block_ids,
dest_block_ids,
layer_idx,
)
if return_code != 0:
task["status"] = "write cache error"
logger.error(
f"write cache failed, layer_idx: {layer_idx}, req_id: {req_id}, dest_ip: {target_ip}, block_id_start {block_id_start} block_id_end {block_id_end}"
)
tok = time.time()
cost_time = tok - tic
block_num = len(src_block_ids)
avg_time_per_block = cost_time * 1000 / block_num # ms
send_cache_speed = block_num * self.block_bytes / 1073741824 / cost_time # GB/s
logger.debug(
f"finish write cache for a layer, {req_id}, {layer_idx}, {target_ip}, {target_id},"
f"block_num: {block_num}, send_cache_speed(GB/s): {round(send_cache_speed, 5)},"
f"avg_time per block(ms): {round(avg_time_per_block, 5)} block_id_start {block_id_start} block_id_end {block_id_end}"
)
task["sended_layer_id"] += 1
assert task["sended_layer_id"] == layer_idx
if task["sended_layer_id"] == self.num_layers - 1:
self.idx_cache_task_dict[engine_index]["sended_block_num"] += (
block_id_end - block_id_start
)
if current_prefilled_token_num_list[i] == task["need_prefill_tokens"]:
if task["status"] != "error":
task["status"] = "finished"
logger.info(
f"finish write cache for all layers, req_id: {req_id}, block_id_end {block_id_end} need_prefill_tokens {task['need_prefill_tokens']}"
)
else:
task["sended_layer_id"] = -1
if end_layer_idx == self.num_layers - 1:
with self.engine_cache_task_thread_lock:
for engine_idx in engine_indexes:
task = self.idx_cache_task_dict[engine_idx]
if task["status"] == "finished" or ("error" in task["status"]):
target_id = int(task["rdma_ports"][self.rank])
if task["transfer_protocol"] == "ipc":
self.messager["ipc"].write_block_by_sync(target_id)
if self.rank == 0:
# to do: robust in TP, here we assume all status in tp are the same. If wrong, all wrong. If ok, all ok.
self.engine_worker_queue.put_finished_req(
[(task["request_id"], task["status"])]
)
logger.info(f"put write cache {task['request_id']}, status {task['status']}")
self.engine_cache_tasks[task["current_id"]] = dict()
del self.cache_info[task["request_id"]]
del self.idx_cache_task_dict[task["current_id"]]
break
except Exception as e:
logger.error(f"prefill layerwise send cache thread has exception: {e} {traceback.format_exc()!s}")
time.sleep(0.01)
def consume_signals(self):
paddle.device.set_device("cpu")
kv_signal_data = paddle.full(shape=[512 * 3 + 2], fill_value=-1, dtype="int32")
while True:
try:
get_output_kv_signal(kv_signal_data, self.rank_id, 0) # wait_flag
if not self.cache_info:
time.sleep(0.01)
continue
tasks_count = kv_signal_data[0]
if tasks_count == -1:
time.sleep(0.001)
continue
layer_id = kv_signal_data[1].numpy().tolist()
if layer_id == self.num_layers - 1:
logger.info(f"tasks_count: {tasks_count}, layer_id: {layer_id}")
batch_engine_ids = []
with self.engine_cache_task_thread_lock:
for bi in range(tasks_count):
engine_idx = kv_signal_data[3 * bi + 2].numpy().tolist()
chuck_token_offset = kv_signal_data[3 * bi + 3].numpy().tolist()
current_seq_len = kv_signal_data[3 * bi + 4].numpy().tolist()
self.engine_cache_tasks[engine_idx]["prefilled_layer_idx"] = layer_id
self.engine_cache_tasks[engine_idx]["prefilled_token_num"] = (
chuck_token_offset + current_seq_len
)
batch_engine_ids.append(engine_idx)
if layer_id == 0:
self.cache_prefilled_engine_ids_queue.put(batch_engine_ids)
except Exception as e:
logger.error(f"Consume signals get exception: {e}")
def _handle_connect_task(self):
while True:
try:
task = self.engine_worker_queue.get_connect_rdma_task()
if task is None:
time.sleep(0.001)
continue
logger.info(f"_handle_connect_task recv task: {task}")
task_id = task["task_id"]
ip, rdma_port = task["ip"], task["rdma_port"]
status = self.messager["rdma"].connect(ip, rdma_port)
if not status:
response = {"task_id": task_id, "success": False}
else:
response = {"task_id": task_id, "success": True}
self.engine_worker_queue.put_connect_rdma_task_response(response)
except Exception as e:
logger.error(f"handle_connect_task has exception: {e}")
def main():
device = args.device_id
rank = args.rank
paddle.set_device(f"gpu:{device}")
cache_type = args.cache_dtype
speculative_config = SpeculativeConfig(args.speculative_config)
num_extra_layers = speculative_config.num_extra_cache_layer
num_extra_layer_gpu_blocks = int(args.num_gpu_blocks * speculative_config.num_gpu_block_expand_ratio)
gpu_cache_kvs = {}
gpu_cache_k_tensors = []
gpu_cache_v_tensors = []
for i in range(args.num_layers + num_extra_layers):
num_gpu_blocks = args.num_gpu_blocks if i < args.num_layers else num_extra_layer_gpu_blocks
gpu_cache_kvs[f"key_caches_{i}_rank{rank}_device{device}"] = paddle.full(
shape=[
num_gpu_blocks,
args.kv_num_head,
args.block_size,
args.head_dim,
],
fill_value=0,
dtype=cache_type,
)
gpu_cache_k_tensors.append(gpu_cache_kvs[f"key_caches_{i}_rank{rank}_device{device}"])
gpu_cache_kvs[f"value_caches_{i}_rank{rank}_device{device}"] = paddle.full(
shape=[
num_gpu_blocks,
args.kv_num_head,
args.block_size,
args.head_dim,
],
fill_value=0,
dtype=cache_type,
)
gpu_cache_v_tensors.append(gpu_cache_kvs[f"value_caches_{i}_rank{rank}_device{device}"])
set_data_ipc(
gpu_cache_kvs[f"key_caches_{i}_rank{rank}_device{device}"],
f"key_caches_{i}_rank{rank}.device{device}",
)
set_data_ipc(
gpu_cache_kvs[f"value_caches_{i}_rank{rank}_device{device}"],
f"value_caches_{i}_rank{rank}.device{device}",
)
cache_kv_size_byte = sum([tmp.numel() * 1 for key, tmp in gpu_cache_kvs.items()])
logger.info(f"device :{device}")
logger.info(f"cache_kv_size_byte : {cache_kv_size_byte}")
logger.info(f"done init cache (full) gmem alloc : {paddle.device.cuda.memory_allocated()}")
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
cache_messager = CacheMessagerV1(
splitwise_role=args.splitwise_role,
transfer_protocol=args.protocol,
pod_ip=args.pod_ip,
engine_worker_queue_port=args.engine_worker_queue_port,
local_data_parallel_id=args.local_data_parallel_id,
gpu_cache_kvs=gpu_cache_kvs,
rank=rank,
nranks=args.mp_num,
num_layers=args.num_layers + num_extra_layers,
gpu_id=device,
rdma_port=args.rdma_port,
)
else:
cache_messager = CacheMessager(
splitwise_role=args.splitwise_role,
transfer_protocol=args.protocol,
pod_ip=args.pod_ip,
engine_worker_queue_port=args.engine_worker_queue_port,
local_data_parallel_id=args.local_data_parallel_id,
gpu_cache_kvs=gpu_cache_kvs,
rank=rank,
nranks=args.mp_num,
num_layers=args.num_layers + num_extra_layers,
gpu_id=device,
rdma_port=args.rdma_port,
)
cache_ready_signal_data = np.zeros(shape=[args.mp_num], dtype=np.int32)
cache_ready_signal = IPCSignal(
name="cache_ready_signal",
array=cache_ready_signal_data,
dtype=np.int32,
suffix=args.engine_pid,
create=False,
)
cache_ready_signal.value[rank] = 1
if args.splitwise_role == "mixed":
while True:
time.sleep(1)
cache_messager.prefill_layerwise_send_cache_thread()
if __name__ == "__main__":
args = parse_args()
rank_id = args.rank + args.local_data_parallel_id * args.mp_num
logger = get_logger("cache_messager", f"cache_messager_rank{rank_id}.log")
logger.info("create cache messager...")
logger.info(f"{args}")
main()