mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* 修复picodet格式 * * 修正错误文档 * 修复rknpu2 backend后端的部分错误 * 更新pphumanseg example格式 * * 更新pphumanseg example格式 * * 更新picodet example格式 * * 更新scrfd example格式 * * 更新ppseg rknpu2 python example中的错误 * * 修复代码格式问题 * * 修复代码格式问题 * * 修复代码格式问题 * * 修复代码格式问题 * * 修复代码格式问题 * * 修复代码格式问题 Co-authored-by: Jason <jiangjiajun@baidu.com>
95 lines
3.0 KiB
C++
95 lines
3.0 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include <iostream>
|
|
#include <string>
|
|
#include "fastdeploy/vision.h"
|
|
#include <sys/time.h>
|
|
|
|
void ONNXInfer(const std::string& model_dir, const std::string& image_file) {
|
|
std::string model_file = model_dir + "/picodet_s_416_coco_lcnet.onnx";
|
|
std::string params_file;
|
|
std::string config_file = model_dir + "/deploy.yaml";
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseCpu();
|
|
auto format = fastdeploy::ModelFormat::ONNX;
|
|
|
|
auto model = fastdeploy::vision::detection::PicoDet(
|
|
model_file, params_file, config_file,option,format);
|
|
model.GetPostprocessor().ApplyDecodeAndNMS();
|
|
|
|
fastdeploy::TimeCounter tc;
|
|
tc.Start();
|
|
auto im = cv::imread(image_file);
|
|
fastdeploy::vision::DetectionResult res;
|
|
if (!model.Predict(im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
auto vis_im = fastdeploy::vision::VisDetection(im, res,0.5);
|
|
tc.End();
|
|
tc.PrintInfo("PPDet in ONNX");
|
|
|
|
cv::imwrite("infer_onnx.jpg", vis_im);
|
|
std::cout
|
|
<< "Visualized result saved in ./infer_onnx.jpg"
|
|
<< std::endl;
|
|
}
|
|
|
|
void RKNPU2Infer(const std::string& model_dir, const std::string& image_file) {
|
|
auto model_file = model_dir + "/picodet_s_416_coco_lcnet_rk3588.rknn";
|
|
auto params_file = "";
|
|
auto config_file = model_dir + "/infer_cfg.yml";
|
|
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseRKNPU2();
|
|
|
|
auto format = fastdeploy::ModelFormat::RKNN;
|
|
|
|
auto model = fastdeploy::vision::detection::PicoDet(
|
|
model_file, params_file, config_file,option,format);
|
|
|
|
model.GetPostprocessor().ApplyDecodeAndNMS();
|
|
|
|
auto im = cv::imread(image_file);
|
|
|
|
fastdeploy::vision::DetectionResult res;
|
|
fastdeploy::TimeCounter tc;
|
|
tc.Start();
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
tc.End();
|
|
tc.PrintInfo("PPDet in RKNPU2");
|
|
|
|
std::cout << res.Str() << std::endl;
|
|
auto vis_im = fastdeploy::vision::VisDetection(im, res,0.5);
|
|
cv::imwrite("infer_rknpu2.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./infer_rknpu2.jpg" << std::endl;
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
if (argc < 3) {
|
|
std::cout
|
|
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
|
"e.g ./infer_model ./picodet_model_dir ./test.jpeg"
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
RKNPU2Infer(argv[1], argv[2]);
|
|
//ONNXInfer(argv[1], argv[2]);
|
|
return 0;
|
|
}
|
|
|