mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-27 02:20:31 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			263 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			263 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| import os
 | |
| from shutil import copyfile
 | |
| from typing import Any, Dict, List, Optional, Tuple
 | |
| 
 | |
| import sentencepiece as spm
 | |
| from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
 | |
| 
 | |
| VOCAB_FILES_NAMES = {"vocab_file": "spm.model"}
 | |
| 
 | |
| PRETRAINED_VOCAB_FILES_MAP = {
 | |
|     "vocab_file": {},
 | |
|     "tokenizer_file": {},
 | |
| }
 | |
| PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
 | |
| 
 | |
| 
 | |
| class Ernie4_5Tokenizer(PreTrainedTokenizer):
 | |
|     """
 | |
|     Construct a ErnieBot tokenizer. Based on byte-level Byte-Pair-Encoding.
 | |
|     Args:
 | |
|         vocab_file (`str`):
 | |
|             Path to the vocabulary file.
 | |
|     """
 | |
| 
 | |
|     vocab_files_names = VOCAB_FILES_NAMES
 | |
|     resource_files_names = VOCAB_FILES_NAMES
 | |
|     pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
 | |
|     max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
 | |
|     model_input_names = ["input_ids", "attention_mask"]
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         vocab_file,
 | |
|         unk_token="<unk>",
 | |
|         bos_token="<s>",
 | |
|         eos_token="</s>",
 | |
|         pad_token="<pad>",
 | |
|         sp_model_kwargs: Optional[Dict[str, Any]] = None,
 | |
|         add_bos_token=True,
 | |
|         add_eos_token=False,
 | |
|         clean_up_tokenization_spaces=False,
 | |
|         **kwargs,
 | |
|     ):
 | |
|         self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
 | |
|         self.vocab_file = vocab_file
 | |
|         self.add_bos_token = add_bos_token
 | |
|         self.add_eos_token = add_eos_token
 | |
|         self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
 | |
|         self.sp_model.Load(vocab_file)
 | |
| 
 | |
|         bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
 | |
|         eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
 | |
|         unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
 | |
|         pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
 | |
|         super().__init__(
 | |
|             bos_token=bos_token,
 | |
|             eos_token=eos_token,
 | |
|             unk_token=unk_token,
 | |
|             pad_token=pad_token,
 | |
|             add_bos_token=add_bos_token,
 | |
|             add_eos_token=add_eos_token,
 | |
|             sp_model_kwargs=self.sp_model_kwargs,
 | |
|             clean_up_tokenization_spaces=clean_up_tokenization_spaces,
 | |
|             **kwargs,
 | |
|         )
 | |
| 
 | |
|         # for eb35 reader
 | |
|         self.bos_id = self.bos_token_id
 | |
|         self.eos_id = self.eos_token_id
 | |
|         self.sep_id = self.sep_token_id
 | |
|         self.pad_id = self.pad_token_id
 | |
|         self.unk_id = self.unk_token_id
 | |
| 
 | |
|     def __getstate__(self):
 | |
|         state = self.__dict__.copy()
 | |
|         state["sp_model"] = None
 | |
|         return state
 | |
| 
 | |
|     def __setstate__(self, d):
 | |
|         self.__dict__ = d
 | |
|         self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
 | |
|         self.sp_model.Load(self.vocab_file)
 | |
| 
 | |
|     @property
 | |
|     def vocab_size(self):
 | |
|         """Returns vocab size"""
 | |
|         return self.sp_model.get_piece_size()
 | |
| 
 | |
|     def get_vocab(self):
 | |
|         """Returns vocab as a dict"""
 | |
|         vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
 | |
|         vocab.update(self.added_tokens_encoder)
 | |
|         return vocab
 | |
| 
 | |
|     def tokenize(self, text):
 | |
|         """Returns a tokenized string."""
 | |
|         return self._tokenize(text)
 | |
| 
 | |
|     def _tokenize(self, text):
 | |
|         """Returns a tokenized string."""
 | |
|         return self.sp_model.encode(text, out_type=str)
 | |
| 
 | |
|     def decode(
 | |
|         self,
 | |
|         tokens,
 | |
|         skip_special_tokens=False,
 | |
|         clean_up_tokenization_spaces=False,
 | |
|     ):
 | |
|         """Returns a tokenized string."""
 | |
|         return self.sp_model.decode(tokens)
 | |
| 
 | |
|     def _convert_token_to_id(self, token):
 | |
|         """Converts a token (str) in an id using the vocab."""
 | |
|         return self.sp_model.piece_to_id(token)
 | |
| 
 | |
|     def _convert_id_to_token(self, index):
 | |
|         """Converts an index (integer) in a token (str) using the vocab."""
 | |
|         token = self.sp_model.IdToPiece(index)
 | |
|         return token
 | |
| 
 | |
|     def convert_tokens_to_string(self, tokens):
 | |
|         """Converts a sequence of tokens (string) in a single string."""
 | |
|         current_sub_tokens = []
 | |
|         out_string = ""
 | |
|         prev_is_special = False
 | |
|         for i, token in enumerate(tokens):
 | |
|             # make sure that special tokens are not decoded using sentencepiece model
 | |
|             if token in self.all_special_tokens:
 | |
|                 if not prev_is_special and i != 0:
 | |
|                     out_string += " "
 | |
|                 out_string += self.sp_model.decode(current_sub_tokens) + token
 | |
|                 prev_is_special = True
 | |
|                 current_sub_tokens = []
 | |
|             else:
 | |
|                 current_sub_tokens.append(token)
 | |
|                 prev_is_special = False
 | |
|         out_string += self.sp_model.decode(current_sub_tokens)
 | |
|         return out_string
 | |
| 
 | |
|     def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
 | |
|         """
 | |
|         Save the vocabulary and special tokens file to a directory.
 | |
|         Args:
 | |
|             save_directory (`str`):
 | |
|                 The directory in which to save the vocabulary.
 | |
|         Returns:
 | |
|             `Tuple(str)`: Paths to the files saved.
 | |
|         """
 | |
|         if not os.path.isdir(save_directory):
 | |
|             return
 | |
|         out_vocab_file = os.path.join(
 | |
|             save_directory,
 | |
|             (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"],
 | |
|         )
 | |
| 
 | |
|         if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
 | |
|             copyfile(self.vocab_file, out_vocab_file)
 | |
|         elif not os.path.isfile(self.vocab_file):
 | |
|             with open(out_vocab_file, "wb") as fi:
 | |
|                 content_spiece_model = self.sp_model.serialized_model_proto()
 | |
|                 fi.write(content_spiece_model)
 | |
| 
 | |
|         return (out_vocab_file,)
 | |
| 
 | |
|     def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
 | |
|         """
 | |
|         build inputs with special tokens
 | |
|         """
 | |
|         bos_token_id = [self.bos_token_id] if self.add_bos_token else []
 | |
|         eos_token_id = [self.eos_token_id] if self.add_eos_token else []
 | |
| 
 | |
|         output = bos_token_id + token_ids_0 + eos_token_id
 | |
| 
 | |
|         if token_ids_1 is not None:
 | |
|             output = output + bos_token_id + token_ids_1 + eos_token_id
 | |
| 
 | |
|         return output
 | |
| 
 | |
|     def get_special_tokens_mask(
 | |
|         self,
 | |
|         token_ids_0: List[int],
 | |
|         token_ids_1: Optional[List[int]] = None,
 | |
|         already_has_special_tokens: bool = False,
 | |
|     ) -> List[int]:
 | |
|         """
 | |
|         Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
 | |
|         special tokens using the tokenizer `prepare_for_model` method.
 | |
|         Args:
 | |
|             token_ids_0 (`List[int]`):
 | |
|                 List of IDs.
 | |
|             token_ids_1 (`List[int]`, *optional*):
 | |
|                 Optional second list of IDs for sequence pairs.
 | |
|             already_has_special_tokens (`bool`, *optional*, defaults to `False`):
 | |
|                 Whether or not the token list is already formatted with special tokens for the model.
 | |
|         Returns:
 | |
|             `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
 | |
|         """
 | |
|         if already_has_special_tokens:
 | |
|             return super().get_special_tokens_mask(
 | |
|                 token_ids_0=token_ids_0,
 | |
|                 token_ids_1=token_ids_1,
 | |
|                 already_has_special_tokens=True,
 | |
|             )
 | |
| 
 | |
|         bos_token_id = [1] if self.add_bos_token else []
 | |
|         eos_token_id = [1] if self.add_eos_token else []
 | |
| 
 | |
|         if token_ids_1 is None:
 | |
|             return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
 | |
|         return (
 | |
|             bos_token_id
 | |
|             + ([0] * len(token_ids_0))
 | |
|             + eos_token_id
 | |
|             + bos_token_id
 | |
|             + ([0] * len(token_ids_1))
 | |
|             + eos_token_id
 | |
|         )
 | |
| 
 | |
|     def create_token_type_ids_from_sequences(
 | |
|         self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
 | |
|     ) -> List[int]:
 | |
|         """
 | |
|         Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
 | |
|         sequence pair mask has the following format:
 | |
|         ```
 | |
|         0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
 | |
|         | first sequence    | second sequence |
 | |
|         ```
 | |
|         if token_ids_1 is None, only returns the first portion of the mask (0s).
 | |
|         Args:
 | |
|             token_ids_0 (`List[int]`):
 | |
|                 List of ids.
 | |
|             token_ids_1 (`List[int]`, *optional*):
 | |
|                 Optional second list of IDs for sequence pairs.
 | |
|         Returns:
 | |
|             `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
 | |
|         """
 | |
|         bos_token_id = [self.bos_token_id] if self.add_bos_token else []
 | |
|         eos_token_id = [self.eos_token_id] if self.add_eos_token else []
 | |
| 
 | |
|         output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
 | |
| 
 | |
|         if token_ids_1 is not None:
 | |
|             output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
 | |
| 
 | |
|         return output
 | 
