mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	 cd252ec673
			
		
	
	cd252ec673
	
	
		
			
	
		
	
	
		
			Some checks failed
		
		
	
	CE Compile Job / ce_job_pre_check (push) Has been cancelled
				
			CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
				
			CE Compile Job / FD-Clone-Linux (push) Has been cancelled
				
			CE Compile Job / Show Code Archive Output (push) Has been cancelled
				
			CE Compile Job / BUILD_SM8090 (push) Has been cancelled
				
			CE Compile Job / BUILD_SM8689 (push) Has been cancelled
				
			CE Compile Job / CE_UPLOAD (push) Has been cancelled
				
			Deploy GitHub Pages / deploy (push) Has been cancelled
				
			Publish Job / publish_pre_check (push) Has been cancelled
				
			Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
				
			Publish Job / FD-Clone-Linux (push) Has been cancelled
				
			Publish Job / Show Code Archive Output (push) Has been cancelled
				
			Publish Job / BUILD_SM8090 (push) Has been cancelled
				
			Publish Job / BUILD_SM8689 (push) Has been cancelled
				
			Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
				
			Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
				
			Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
				
			Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
				
			Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
				
			Publish Job / Run Base Tests (push) Has been cancelled
				
			Publish Job / Run Accuracy Tests (push) Has been cancelled
				
			
		
			
				
	
	
		
			791 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			791 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| import inspect
 | |
| import re
 | |
| from functools import partial
 | |
| from typing import Dict, Union
 | |
| 
 | |
| import numpy as np
 | |
| import paddle
 | |
| from paddle import nn
 | |
| from paddleformers.transformers import PretrainedModel
 | |
| from paddleformers.transformers.configuration_utils import PretrainedConfig
 | |
| from paddleformers.utils.log import logger
 | |
| 
 | |
| from fastdeploy.config import FDConfig
 | |
| from fastdeploy.model_executor.forward_meta import ForwardMeta
 | |
| from fastdeploy.model_executor.graph_optimization.decorator import (
 | |
|     support_graph_optimization,
 | |
| )
 | |
| from fastdeploy.model_executor.layers.activation import SiluAndMul
 | |
| from fastdeploy.model_executor.layers.attention.attention import Attention
 | |
| from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
 | |
| from fastdeploy.model_executor.layers.linear import (
 | |
|     MergedColumnParallelLinear,
 | |
|     QKVParallelLinear,
 | |
|     ReplicatedLinear,
 | |
|     RowParallelLinear,
 | |
| )
 | |
| from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
 | |
| from fastdeploy.model_executor.layers.moe.moe import FusedMoE
 | |
| from fastdeploy.model_executor.layers.normalization import RMSNorm
 | |
| from fastdeploy.model_executor.models.model_base import ModelForCasualLM
 | |
| from fastdeploy.model_executor.models.tp_utils import TensorSplitMode as tsm
 | |
| from fastdeploy.model_executor.models.utils import LayerIdPlaceholder as layerid
 | |
| from fastdeploy.model_executor.models.utils import WeightMeta
 | |
| from fastdeploy.worker.experts_manager import RedundantExpertManger
 | |
| 
 | |
| 
 | |
| class Ernie4_5_MLP(nn.Layer):
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         intermediate_size: int,
 | |
|         prefix: str = "",
 | |
|         reduce_results: bool = True,
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
|         self.nranks = fd_config.parallel_config.tensor_parallel_size
 | |
|         self.up_gate_proj = MergedColumnParallelLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.up_gate_proj",
 | |
|             input_size=fd_config.model_config.hidden_size,
 | |
|             output_size=intermediate_size * 2,
 | |
|             with_bias=False,
 | |
|             activation=fd_config.model_config.hidden_act,
 | |
|         )
 | |
| 
 | |
|         self.down_proj = RowParallelLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.down_proj",
 | |
|             input_size=intermediate_size,
 | |
|             output_size=fd_config.model_config.hidden_size,
 | |
|             with_bias=False,
 | |
|             reduce_results=reduce_results,
 | |
|         )
 | |
| 
 | |
|         self.act_fn = SiluAndMul(
 | |
|             fd_config=fd_config,
 | |
|             bias=None,
 | |
|             act_method=fd_config.model_config.hidden_act,
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         self.up_gate_proj.load_state_dict(state_dict)
 | |
|         self.down_proj.load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(self, hidden_states: paddle.Tensor):
 | |
|         gate_up_out = self.up_gate_proj(hidden_states)
 | |
|         act_out = self.act_fn(gate_up_out)
 | |
|         down_out = self.down_proj(act_out)
 | |
|         return down_out
 | |
| 
 | |
| 
 | |
| class Ernie4_5_MoE(nn.Layer):
 | |
|     def __init__(
 | |
|         self, fd_config: FDConfig, layer_id: int, prefix: str, redundant_table_manger: RedundantExpertManger = None
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
|         moe_quant_type = ""
 | |
|         if hasattr(fd_config.quant_config, "moe_quant_type"):
 | |
|             moe_quant_type = fd_config.quant_config.moe_quant_type
 | |
| 
 | |
|         self.expert_parallel_size = fd_config.parallel_config.expert_parallel_size
 | |
|         self.tensor_parallel_size = fd_config.parallel_config.tensor_parallel_size
 | |
|         self.tensor_parallel_rank = fd_config.parallel_config.tensor_parallel_rank
 | |
|         self.tp_group = fd_config.parallel_config.tp_group
 | |
| 
 | |
|         self.use_ep = self.expert_parallel_size > 1
 | |
|         self.use_tp = self.tensor_parallel_size > 1
 | |
| 
 | |
|         if moe_quant_type == "w4a8" or moe_quant_type == "w4afp8":
 | |
|             weight_key_map = {
 | |
|                 "gate_weight_key": f"{prefix}.gate.weight",
 | |
|                 "gate_correction_bias_key": f"{prefix}.moe_statics.e_score_correction_bias",
 | |
|                 "up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.quant_weight",
 | |
|                 "down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.quant_weight",
 | |
|                 "up_gate_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.weight_scale",
 | |
|                 "down_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.down_proj.weight_scale",
 | |
|                 "up_gate_proj_expert_in_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.activation_scale",
 | |
|                 "down_proj_expert_in_scale_key": f"{prefix}.experts.{{}}.down_proj.activation_scale",
 | |
|             }
 | |
|         elif moe_quant_type == "w4w2":
 | |
|             weight_key_map = {
 | |
|                 "gate_weight_key": f"{prefix}.gate.weight",
 | |
|                 "gate_correction_bias_key": f"{prefix}.moe_statics.e_score_correction_bias",
 | |
|                 "up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.quant_weight",
 | |
|                 "down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.quant_weight",
 | |
|                 "up_gate_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.weight_scale",
 | |
|                 "down_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.down_proj.weight_scale",
 | |
|                 "up_gate_proj_expert_super_scales_key": f"{prefix}.experts.{{}}.up_gate_proj.super_scales",
 | |
|                 "down_proj_expert_super_scales_key": f"{prefix}.experts.{{}}.down_proj.super_scales",
 | |
|                 "up_gate_proj_expert_code_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.code_scale",
 | |
|                 "down_proj_expert_code_scale_key": f"{prefix}.experts.{{}}.down_proj.code_scale",
 | |
|                 "up_gate_proj_expert_code_zp_key": f"{prefix}.experts.{{}}.up_gate_proj.code_zp",
 | |
|                 "down_proj_expert_code_zp_key": f"{prefix}.experts.{{}}.down_proj.code_zp",
 | |
|             }
 | |
|         elif moe_quant_type == "tensor_wise_fp8" or (
 | |
|             moe_quant_type == "block_wise_fp8" and fd_config.model_config.is_quantized
 | |
|         ):
 | |
|             weight_key_map = {
 | |
|                 "gate_weight_key": f"{prefix}.gate.weight",
 | |
|                 "gate_correction_bias_key": f"{prefix}.moe_statics.e_score_correction_bias",
 | |
|                 "up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.quant_weight",
 | |
|                 "down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.quant_weight",
 | |
|                 "up_gate_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.weight_scale",
 | |
|                 "down_proj_expert_weight_scale_key": f"{prefix}.experts.{{}}.down_proj.weight_scale",
 | |
|                 "up_gate_proj_expert_in_scale_key": f"{prefix}.experts.{{}}.up_gate_proj.activation_scale",
 | |
|                 "down_proj_expert_in_scale_key": f"{prefix}.experts.{{}}.down_proj.activation_scale",
 | |
|             }
 | |
|         else:
 | |
|             weight_key_map = {
 | |
|                 "gate_weight_key": f"{prefix}.gate.weight",
 | |
|                 "gate_correction_bias_key": f"{prefix}.moe_statics.e_score_correction_bias",
 | |
|                 "up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.weight",
 | |
|                 "down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.weight",
 | |
|             }
 | |
| 
 | |
|         self.gate = ReplicatedLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.gate",
 | |
|             input_size=fd_config.model_config.hidden_size,
 | |
|             output_size=fd_config.model_config.moe_num_experts,
 | |
|             with_bias=False,
 | |
|             skip_quant=True,
 | |
|             weight_dtype="float32",
 | |
|         )
 | |
| 
 | |
|         self.experts = FusedMoE(
 | |
|             fd_config=fd_config,
 | |
|             moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
 | |
|             num_experts=fd_config.model_config.moe_num_experts,
 | |
|             top_k=fd_config.model_config.moe_k,
 | |
|             layer_idx=layer_id,
 | |
|             gate_correction_bias=None,
 | |
|             redundant_table_manger=redundant_table_manger,
 | |
|             weight_key_map=weight_key_map,
 | |
|         )
 | |
| 
 | |
|         if fd_config.model_config.moe_use_aux_free:
 | |
|             self.experts.gate_correction_bias = self.create_parameter(
 | |
|                 shape=[1, fd_config.model_config.moe_num_experts],
 | |
|                 dtype="float32",
 | |
|                 default_initializer=paddle.nn.initializer.Constant(0),
 | |
|             )
 | |
|         else:
 | |
|             self.experts.gate_correction_bias = None
 | |
| 
 | |
|         self.num_shared_experts = fd_config.model_config.moe_num_shared_experts
 | |
|         if self.num_shared_experts > 0:
 | |
|             shared_experts_hidden_dim = self.num_shared_experts * fd_config.model_config.moe_intermediate_size
 | |
|             self.shared_experts = Ernie4_5_MLP(
 | |
|                 fd_config=fd_config,
 | |
|                 intermediate_size=shared_experts_hidden_dim,
 | |
|                 prefix=f"{prefix}.shared_experts",
 | |
|             )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         self.gate.load_state_dict(state_dict)
 | |
|         self.experts.load_state_dict(state_dict)
 | |
|         if self.experts.gate_correction_bias is not None:
 | |
|             gate_correction_bias_tensor = state_dict.pop(self.experts.gate_correction_bias_key)
 | |
|             if self.experts.gate_correction_bias.shape != gate_correction_bias_tensor.shape:
 | |
|                 gate_correction_bias_tensor = gate_correction_bias_tensor.reshape(
 | |
|                     self.experts.gate_correction_bias.shape
 | |
|                 )
 | |
|             self.experts.gate_correction_bias.set_value(gate_correction_bias_tensor)
 | |
|         if self.num_shared_experts > 0:
 | |
|             self.shared_experts.load_state_dict(state_dict)
 | |
| 
 | |
|     def update_state_dict(self, state_dict):
 | |
|         self.fused_moe.load_state_dict(state_dict, True)
 | |
| 
 | |
|     def split_allgather_out(self, hidden_states: paddle.Tensor, token_num: int):
 | |
|         token_num_per_rank = (token_num + self.tensor_parallel_size - 1) // self.tensor_parallel_size
 | |
|         # AllGather will hang when the data shapes on multi-ranks are different!
 | |
|         part_hidden_states = paddle.zeros(
 | |
|             shape=[token_num_per_rank, hidden_states.shape[1]], dtype=hidden_states.dtype
 | |
|         )
 | |
|         start_offset = self.tensor_parallel_rank * token_num_per_rank
 | |
|         end_offset = (self.tensor_parallel_rank + 1) * token_num_per_rank
 | |
|         if end_offset > token_num:
 | |
|             end_offset = token_num
 | |
|         part_hidden_states[: (end_offset - start_offset), :] = hidden_states[start_offset:end_offset, :]
 | |
|         out = self.experts(part_hidden_states, self.gate)
 | |
|         multi_outs = []
 | |
|         paddle.distributed.all_gather(multi_outs, out, self.tp_group)
 | |
|         out = paddle.concat(multi_outs, axis=0)
 | |
|         out = out[:token_num, :]
 | |
|         return out
 | |
| 
 | |
|     def forward(self, hidden_states: paddle.Tensor):
 | |
|         token_num = hidden_states.shape[0]
 | |
|         if self.use_ep and self.use_tp and token_num >= self.tensor_parallel_size:
 | |
|             out = self.split_allgather_out(hidden_states, token_num)
 | |
|         else:
 | |
|             out = self.experts(hidden_states, self.gate)
 | |
|         if self.num_shared_experts > 0:
 | |
|             s_x = self.shared_experts(hidden_states)
 | |
|             out = out + s_x
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class Ernie4_5_Attention(nn.Layer):
 | |
|     def __init__(self, fd_config: FDConfig, layer_id: int, prefix: str) -> None:
 | |
|         super().__init__()
 | |
| 
 | |
|         self.qkv_proj = QKVParallelLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.qkv_proj",
 | |
|         )
 | |
| 
 | |
|         self.o_proj = RowParallelLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.o_proj",
 | |
|             input_size=fd_config.model_config.head_dim * fd_config.model_config.num_attention_heads,
 | |
|             output_size=fd_config.model_config.hidden_size,
 | |
|         )
 | |
|         self.attn = Attention(
 | |
|             fd_config=fd_config,
 | |
|             layer_id=layer_id,
 | |
|             prefix=prefix,
 | |
|             use_neox_rotary_style=False,
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         self.qkv_proj.load_state_dict(state_dict)
 | |
|         self.o_proj.load_state_dict(state_dict)
 | |
|         self.attn.load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         forward_meta: ForwardMeta,
 | |
|         hidden_states: paddle.Tensor,
 | |
|     ):
 | |
|         qkv_out = self.qkv_proj(hidden_states)
 | |
| 
 | |
|         attn_out = self.attn(
 | |
|             qkv=qkv_out,
 | |
|             forward_meta=forward_meta,
 | |
|         )
 | |
| 
 | |
|         output = self.o_proj(attn_out)
 | |
| 
 | |
|         return output
 | |
| 
 | |
| 
 | |
| class Ernie4_5_DecoderLayer(nn.Layer):
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         redundant_table_manger: RedundantExpertManger = None,
 | |
|         prefix: str = "",
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
|         layer_id = int(prefix.split(sep=".")[-1])
 | |
| 
 | |
|         self.self_attn = Ernie4_5_Attention(
 | |
|             fd_config=fd_config,
 | |
|             layer_id=layer_id,
 | |
|             prefix=f"{prefix}.self_attn",
 | |
|         )
 | |
| 
 | |
|         if (
 | |
|             getattr(fd_config.model_config, "moe_num_experts", None) is not None
 | |
|             and layer_id >= fd_config.model_config.moe_layer_start_index
 | |
|         ):
 | |
|             self.mlp = Ernie4_5_MoE(
 | |
|                 fd_config=fd_config,
 | |
|                 layer_id=layer_id,
 | |
|                 redundant_table_manger=redundant_table_manger,
 | |
|                 prefix=f"{prefix}.mlp",
 | |
|             )
 | |
|         else:
 | |
|             self.mlp = Ernie4_5_MLP(
 | |
|                 fd_config=fd_config,
 | |
|                 intermediate_size=fd_config.model_config.intermediate_size,
 | |
|                 prefix=f"{prefix}.mlp",
 | |
|             )
 | |
| 
 | |
|         self.input_layernorm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=fd_config.model_config.rms_norm_eps,
 | |
|             prefix=f"{prefix}.input_layernorm",
 | |
|         )
 | |
| 
 | |
|         self.post_attention_layernorm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=fd_config.model_config.rms_norm_eps,
 | |
|             prefix=f"{prefix}.post_attention_layernorm",
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         self.self_attn.load_state_dict(state_dict)
 | |
|         self.mlp.load_state_dict(state_dict)
 | |
|         self.input_layernorm.load_state_dict(state_dict)
 | |
|         self.post_attention_layernorm.load_state_dict(state_dict)
 | |
| 
 | |
|     def update_state_dict(self, state_dict):
 | |
|         self.mlp.update_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         forward_meta: ForwardMeta,
 | |
|         hidden_states: paddle.Tensor,
 | |
|         residual: paddle.Tensor = None,
 | |
|     ):
 | |
|         if residual is None:
 | |
|             residual = hidden_states
 | |
|             hidden_states = self.input_layernorm(hidden_states)
 | |
|         else:
 | |
|             hidden_states, residual = self.input_layernorm(hidden_states, residual)
 | |
| 
 | |
|         hidden_states = self.self_attn(
 | |
|             hidden_states=hidden_states,
 | |
|             forward_meta=forward_meta,
 | |
|         )
 | |
| 
 | |
|         hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
 | |
| 
 | |
|         hidden_states = self.mlp(hidden_states)
 | |
| 
 | |
|         return hidden_states, residual
 | |
| 
 | |
| 
 | |
| @support_graph_optimization
 | |
| class Ernie4_5_Model(nn.Layer):
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig = None,
 | |
|     ):
 | |
|         """
 | |
|         Initializer for the Ernie4_5_Model class.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         """
 | |
|         super().__init__()
 | |
| 
 | |
|         self.num_layers = fd_config.model_config.num_hidden_layers
 | |
|         fd_config.model_config.pretrained_config.prefix_name = "ernie"
 | |
|         self.fd_config = fd_config
 | |
|         self.redundant_table_manger = None
 | |
|         if fd_config.model_config.enable_redundant_experts is True:
 | |
|             self.redundant_table_manger = RedundantExpertManger(
 | |
|                 n_routed_experts=fd_config.model_config.moe_num_experts,
 | |
|                 num_hidden_layers=fd_config.model_config.num_hidden_layers,
 | |
|                 redundant_experts_num=fd_config.model_config.redundant_experts_num,
 | |
|                 ep_size=fd_config.parallel_config.expert_parallel_size,
 | |
|             )
 | |
| 
 | |
|         self.embed_tokens = VocabParallelEmbedding(
 | |
|             fd_config=fd_config,
 | |
|             num_embeddings=fd_config.model_config.vocab_size,
 | |
|             embedding_dim=fd_config.model_config.hidden_size,
 | |
|             params_dtype=paddle.get_default_dtype(),
 | |
|             prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
 | |
|         )
 | |
| 
 | |
|         self.layers = nn.LayerList(
 | |
|             [
 | |
|                 Ernie4_5_DecoderLayer(
 | |
|                     fd_config=fd_config,
 | |
|                     redundant_table_manger=self.redundant_table_manger,
 | |
|                     prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}",
 | |
|                 )
 | |
|                 for i in range(self.num_layers)
 | |
|             ]
 | |
|         )
 | |
| 
 | |
|         self.norm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=fd_config.model_config.rms_norm_eps,
 | |
|             prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """
 | |
|         Load model parameters from a given state dictionary.
 | |
| 
 | |
|         Args:
 | |
|             state_dict (dict[str, np.ndarray | paddle.Tensor]):
 | |
|                 A dictionary containing model parameters, where keys are parameter names
 | |
|                 and values are NumPy arrays or PaddlePaddle tensors.
 | |
|         """
 | |
|         self.embed_tokens.load_state_dict(state_dict)
 | |
|         self.norm.load_state_dict(state_dict)
 | |
|         for i in range(self.num_layers):
 | |
|             logger.info(f"Start load layer {i}")
 | |
|             self.layers[i].load_state_dict(state_dict)
 | |
| 
 | |
|     def update_state_dict(self, state_dict):
 | |
|         """
 | |
|         Update model parameters from a given state dictionary.
 | |
| 
 | |
|         Args:
 | |
|             state_dict (dict[str, np.ndarray | paddle.Tensor]):
 | |
|                 A dictionary containing model parameters, where keys are parameter names
 | |
|                 and values are NumPy arrays or PaddlePaddle tensors.
 | |
|         """
 | |
|         for i in range(
 | |
|             self.fd_config.model_config.moe_layer_start_index,
 | |
|             self.fd_config.model_config.num_hidden_layers,
 | |
|         ):
 | |
|             logger.info(f"Start update layer {i}")
 | |
|             self.layers[i].update_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         ids_remove_padding: paddle.Tensor,
 | |
|         forward_meta: ForwardMeta,
 | |
|     ):
 | |
|         hidden_states = self.embed_tokens(ids_remove_padding=ids_remove_padding)
 | |
| 
 | |
|         residual = None
 | |
|         for i in range(self.num_layers):
 | |
|             hidden_states, residual = self.layers[i](forward_meta, hidden_states, residual)
 | |
| 
 | |
|         hidden_states = hidden_states + residual
 | |
| 
 | |
|         out = self.norm(hidden_states)
 | |
| 
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class Ernie4_5_MoeForCausalLM(ModelForCasualLM):
 | |
|     """
 | |
|     Ernie4_5_MoeForCausalLM
 | |
|     """
 | |
| 
 | |
|     def __init__(self, fd_config: FDConfig):
 | |
|         """
 | |
|         Args:
 | |
|             fd_config (FDConfig): Configurations for the LLM model.
 | |
|         """
 | |
|         super(Ernie4_5_MoeForCausalLM, self).__init__(fd_config)
 | |
|         self.fd_config = fd_config
 | |
|         self.ernie = Ernie4_5_Model(fd_config=fd_config)
 | |
| 
 | |
|         self.ori_vocab_size = fd_config.model_config.ori_vocab_size
 | |
| 
 | |
|         self.lm_head = ParallelLMHead(
 | |
|             fd_config=fd_config,
 | |
|             embedding_dim=fd_config.model_config.hidden_size,
 | |
|             num_embeddings=fd_config.model_config.vocab_size,
 | |
|             prefix="lm_head",
 | |
|         )
 | |
|         self.tie_word_embeddings = fd_config.model_config.tie_word_embeddings
 | |
| 
 | |
|     @classmethod
 | |
|     def name(self):
 | |
|         return "Ernie4_5_MoeForCausalLM"
 | |
| 
 | |
|     @paddle.no_grad()
 | |
|     def set_state_dict(self, state_dict: Dict[str, Union[np.ndarray, paddle.Tensor]]):
 | |
|         """
 | |
|         Load model parameters from a given state dictionary.
 | |
| 
 | |
|         Args:
 | |
|             state_dict (dict[str, np.ndarray | paddle.Tensor]):
 | |
|                 A dictionary containing model parameters, where keys are parameter names
 | |
|                 and values are NumPy arrays or PaddlePaddle tensors.
 | |
|         """
 | |
|         self.ernie.load_state_dict(state_dict)
 | |
|         if self.tie_word_embeddings:
 | |
|             self.lm_head.load_state_dict({self.lm_head.weight_key: self.ernie.embed_tokens.embeddings.weight})
 | |
|         else:
 | |
|             self.lm_head.load_state_dict(state_dict)
 | |
| 
 | |
|     @paddle.no_grad()
 | |
|     def load_weights(self, weights_iterator) -> None:
 | |
|         """
 | |
|         Load model parameters from a given weights_iterator object.
 | |
| 
 | |
|         Args:
 | |
|             weights_iterator (Iterator): An iterator yielding (name, weight) pairs.
 | |
|         """
 | |
| 
 | |
|         from fastdeploy.model_executor.utils import (
 | |
|             default_weight_loader,
 | |
|             process_weights_after_loading,
 | |
|         )
 | |
| 
 | |
|         general_params_mapping = [
 | |
|             # (param_name, weight_name, expert_id, shard_id)
 | |
|             ("embed_tokens.embeddings", "embed_tokens", None, None),
 | |
|             ("lm_head.linear", "lm_head", None, None),
 | |
|             ("experts.gate_correction_bias", "moe_statics.e_score_correction_bias", None, None),
 | |
|             ("qkv_proj", "q_proj", None, "q"),
 | |
|             ("qkv_proj", "k_proj", None, "k"),
 | |
|             ("qkv_proj", "v_proj", None, "v"),
 | |
|             ("up_gate_proj", "gate_proj", None, "gate"),
 | |
|             ("up_gate_proj", "up_proj", None, "up"),
 | |
|         ]
 | |
| 
 | |
|         expert_params_mapping = []
 | |
|         if getattr(self.fd_config.model_config, "moe_num_experts", None) is not None:
 | |
|             expert_params_mapping = FusedMoE.make_expert_params_mapping(
 | |
|                 num_experts=self.fd_config.model_config.moe_num_experts,
 | |
|                 ckpt_down_proj_name="down_proj",
 | |
|                 ckpt_gate_up_proj_name="up_gate_proj",
 | |
|                 ckpt_gate_proj_name="gate_proj",
 | |
|                 ckpt_up_proj_name="up_proj",
 | |
|                 param_gate_up_proj_name="experts.up_gate_proj_",
 | |
|                 param_down_proj_name="experts.down_proj_",
 | |
|             )
 | |
|         all_param_mapping = general_params_mapping + expert_params_mapping
 | |
| 
 | |
|         params_dict = dict(self.named_parameters())
 | |
|         process_weights_after_loading_fn = process_weights_after_loading(dict(self.named_sublayers()))
 | |
| 
 | |
|         for loaded_weight_name, loaded_weight in weights_iterator:
 | |
|             loaded_weight_name = loaded_weight_name.replace("model", "ernie")
 | |
|             for param_name, weight_name, exp_id, shard_id in all_param_mapping:
 | |
|                 model_param_name = loaded_weight_name.replace(weight_name, param_name)
 | |
|                 if model_param_name not in params_dict:
 | |
|                     continue
 | |
|                 param = params_dict[model_param_name]
 | |
|                 expert_id = exp_id
 | |
|                 shard_id = shard_id
 | |
|                 break
 | |
|             else:
 | |
|                 expert_id = None
 | |
|                 shard_id = None
 | |
|                 model_param_name = loaded_weight_name
 | |
|                 if model_param_name not in params_dict.keys():
 | |
|                     continue
 | |
|                 param = params_dict[model_param_name]
 | |
| 
 | |
|             # Get weight loader from parameter and set weight
 | |
|             weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
 | |
|             sig = inspect.signature(weight_loader)
 | |
|             if "expert_id" in sig.parameters:
 | |
|                 weight_loader(param, loaded_weight, expert_id=expert_id, shard_id=shard_id)
 | |
|             else:
 | |
|                 weight_loader(param, loaded_weight, shard_id)
 | |
| 
 | |
|             model_sublayer_name = re.sub(r"\.(up_gate_proj_weight|down_proj_weight|weight)$", "", model_param_name)
 | |
|             process_weights_after_loading_fn(model_sublayer_name, param)
 | |
| 
 | |
|         if self.tie_word_embeddings:
 | |
|             self.lm_head.load_state_dict({self.lm_head.weight_key: self.ernie.embed_tokens.embeddings.weight})
 | |
| 
 | |
|     def compute_logits(self, hidden_states: paddle.Tensor):
 | |
|         logits = self.lm_head(hidden_states)
 | |
|         logits = logits.astype(paddle.float32)
 | |
|         logits[:, self.ori_vocab_size :] = -float("inf")
 | |
| 
 | |
|         return logits
 | |
| 
 | |
|     def empty_input_forward(self):
 | |
|         """
 | |
|         empty_input_forward
 | |
|         """
 | |
|         fake_hidden_states = paddle.empty(
 | |
|             shape=[0, self.fd_config.model_config.hidden_size],
 | |
|             dtype=paddle.get_default_dtype(),
 | |
|         )
 | |
|         for i in range(
 | |
|             self.fd_config.model_config.moe_layer_start_index,
 | |
|             self.fd_config.model_config.num_hidden_layers,
 | |
|         ):
 | |
|             self.ernie.layers[i].mlp.experts(fake_hidden_states, self.ernie.layers[i].mlp.gate)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         ids_remove_padding: paddle.Tensor,
 | |
|         forward_meta: ForwardMeta,
 | |
|     ):
 | |
|         hidden_states = self.ernie(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta)
 | |
| 
 | |
|         return hidden_states
 | |
| 
 | |
|     def clear_grpah_opt_backend(self):
 | |
|         """Clear graph optimization bakcend, the captured cuda graph will be cleaned"""
 | |
|         self.ernie.clear_grpah_opt_backend(fd_config=self.fd_config)
 | |
| 
 | |
| 
 | |
| class Ernie4_5_ForCausalLM(Ernie4_5_MoeForCausalLM):
 | |
|     """
 | |
|     Ernie4_5_ForCausalLM
 | |
|     """
 | |
| 
 | |
|     @classmethod
 | |
|     def name(self):
 | |
|         """
 | |
|         Model Architecture Name
 | |
|         """
 | |
|         return "Ernie4_5_ForCausalLM"
 | |
| 
 | |
| 
 | |
| class Ernie4_5_MoePretrainedModel(PretrainedModel):
 | |
|     """
 | |
|     Ernie4_5_MoePretrainedModel
 | |
|     """
 | |
| 
 | |
|     config_class = FDConfig
 | |
| 
 | |
|     def _init_weight(self, layer):
 | |
|         """
 | |
|         _init_weight
 | |
|         """
 | |
|         return None
 | |
| 
 | |
|     @classmethod
 | |
|     def arch_name(self):
 | |
|         return "Ernie4_5_MoeForCausalLM"
 | |
| 
 | |
|     weight_infos = [
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.LAYER_ID}}}.self_attn.qkv_proj.weight",
 | |
|             True,
 | |
|             tsm.GQA,
 | |
|         ),
 | |
|         WeightMeta(f".layers.{{{layerid.LAYER_ID}}}.self_attn.o_proj.weight", False),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.FFN_LAYER_ID}}}.mlp.up_gate_proj.weight",
 | |
|             True,
 | |
|             tsm.PairFused,
 | |
|         ),
 | |
|         WeightMeta(f".layers.{{{layerid.FFN_LAYER_ID}}}.mlp.down_proj.weight", False),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.experts.{{{layerid.EXPERT_ID}}}.up_gate_proj.weight",
 | |
|             True,
 | |
|             tsm.PairFused,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.experts.{{{layerid.EXPERT_ID}}}.down_proj.weight",
 | |
|             False,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.shared_experts.up_gate_proj.weight",
 | |
|             True,
 | |
|             tsm.PairFused,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.shared_experts.down_proj.weight",
 | |
|             False,
 | |
|         ),
 | |
|         WeightMeta(".embed_tokens.weight", False),
 | |
|         WeightMeta("lm_head.weight", True),
 | |
|         # quant tensorwise
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.LAYER_ID}}}.self_attn.qkv_proj.quant_weight",
 | |
|             True,
 | |
|             tsm.GQA,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.LAYER_ID}}}.self_attn.o_proj.quant_weight",
 | |
|             False,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.FFN_LAYER_ID}}}.mlp.up_gate_proj.quant_weight",
 | |
|             True,
 | |
|             tsm.PairFused,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.FFN_LAYER_ID}}}.mlp.down_proj.quant_weight",
 | |
|             False,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.experts.{{{layerid.EXPERT_ID}}}.up_gate_proj.quant_weight",
 | |
|             True,
 | |
|             tsm.PairFused,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.experts.{{{layerid.EXPERT_ID}}}.down_proj.quant_weight",
 | |
|             False,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.shared_experts.up_gate_proj.quant_weight",
 | |
|             True,
 | |
|             tsm.PairFused,
 | |
|         ),
 | |
|         WeightMeta(
 | |
|             f".layers.{{{layerid.MOE_LAYER_ID}}}.mlp.shared_experts.down_proj.quant_weight",
 | |
|             False,
 | |
|         ),
 | |
|     ]
 | |
| 
 | |
|     @classmethod
 | |
|     def _get_tensor_parallel_mappings(cls, config: PretrainedConfig, is_split=True):
 | |
|         """
 | |
|         get_tensor_parallel_mappings
 | |
|         """
 | |
|         logger.info("erine inference model _get_tensor_parallel_mappings")
 | |
|         from fastdeploy.model_executor.models.tp_utils import (
 | |
|             build_expanded_keys,
 | |
|             has_prefix,
 | |
|             split_or_merge_func_v1,
 | |
|         )
 | |
| 
 | |
|         fn = split_or_merge_func_v1(
 | |
|             is_split=is_split,
 | |
|             tensor_parallel_degree=config.tensor_parallel_degree,
 | |
|             tensor_parallel_rank=config.tensor_parallel_rank,
 | |
|             num_attention_heads=config.num_attention_heads,
 | |
|             num_key_value_heads=config.num_key_value_heads,
 | |
|             head_dim=config.head_dim,
 | |
|         )
 | |
| 
 | |
|         def get_tensor_parallel_split_mappings(num_layers, moe_num_experts, moe_layer_start_index, prefix_name):
 | |
|             base_actions = {}
 | |
|             weight_infos = cls.weight_infos
 | |
|             for weight_name, is_column, extra in weight_infos:
 | |
|                 params = {
 | |
|                     "is_column": is_column,
 | |
|                     **({extra.value: True} if extra else {}),
 | |
|                 }
 | |
| 
 | |
|                 if "lm_head.weight" in weight_name:
 | |
|                     key = weight_name
 | |
|                 elif not has_prefix(prefix_name, weight_name):
 | |
|                     key = f"{prefix_name}{weight_name}"
 | |
|                 else:
 | |
|                     key = weight_name
 | |
|                 base_actions[key] = partial(fn, **params)
 | |
|             final_actions = {}
 | |
|             start_layer = moe_layer_start_index if moe_layer_start_index > 0 else num_layers
 | |
|             final_actions = build_expanded_keys(base_actions, num_layers, start_layer, moe_num_experts)
 | |
|             return final_actions
 | |
| 
 | |
|         mappings = get_tensor_parallel_split_mappings(
 | |
|             config.num_hidden_layers,
 | |
|             getattr(config, "moe_num_experts", 0),
 | |
|             getattr(config, "moe_layer_start_index", -1),
 | |
|             config.prefix_name,
 | |
|         )
 | |
|         return mappings
 | |
| 
 | |
| 
 | |
| class Ernie4_5_PretrainedModel(Ernie4_5_MoePretrainedModel):
 | |
|     """
 | |
|     Ernie4_5_PretrainedModel
 | |
|     """
 | |
| 
 | |
|     @classmethod
 | |
|     def arch_name(self):
 | |
|         """
 | |
|         Model Architecture Name
 | |
|         """
 | |
|         return "Ernie4_5_ForCausalLM"
 |