mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-13 20:34:02 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples
English | 简体中文
PP-Humanseg v1 Model Frontend Deployment
Model Version
Deploy PP-Humanseg v1 Model on Frontend
To deploy and use PP-Humanseg v1 model of web demo, please refer to document.
PP-Humanseg v1 js interface
import * as humanSeg from "@paddle-js-models/humanseg";
# Load and initialise model
await humanSeg.load(Config);
# Portrait segmentation
const res = humanSeg.getGrayValue(input)
# Extract the binary map of portrait and background
humanSeg.drawMask(res)
# Visualization function for background replacement
humanSeg.drawHumanSeg(res)
# Blur background
humanSeg.blurBackground(res)
Parameters in function load()
- Config(dict): Configuration parameter for PP-Humanseg model, default is {modelpath : 'https://paddlejs.bj.bcebos.com/models/fuse/humanseg/humanseg_398x224_fuse_activation/model.json', mean: [0.5, 0.5, 0.5], std: [0.5, 0.5, 0.5], enableLightModel: false};modelPath is the default PP-Humanseg js model. Mean, std respectively represent the mean and standard deviation of the preprocessing, and enableLightModel represents whether to use a lighter model.
Parameters in function getGrayValue()
- input(HTMLImageElement | HTMLVideoElement | HTMLCanvasElement): Input image parameter.
Parameters in function drawMask()
- seg_values(number[]): Input parameter, generally the result of function getGrayValue is used as input.
Parameters in function blurBackground()
- seg_values(number[]): Input parameter, generally the result of function getGrayValue is used as input.
Parameters in function drawHumanSeg()
- seg_values(number[]): Input parameter, generally the result of function getGrayValue is used as input.