mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 09:31:35 +08:00

* 更新交叉编译 * 更新交叉编译 * 更新交叉编译 * 更新交叉编译 * 更新交叉编译 * 更新交叉编译 * 更新交叉编译 * 更新交叉编译 * 更新交叉编译 * Update issues.md * Update fastdeploy_init.sh * 更新交叉编译 * 更新insightface系列模型的rknpu2支持 * 更新insightface系列模型的rknpu2支持 * 更新说明文档 * 更新insightface * 尝试解决pybind问题 Co-authored-by: Jason <928090362@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com>
227 lines
9.3 KiB
Python
227 lines
9.3 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from ..... import FastDeployModel, ModelFormat
|
|
from ..... import c_lib_wrap as C
|
|
|
|
|
|
class InsightFaceRecognitionPreprocessor:
|
|
def __init__(self):
|
|
"""Create a preprocessor for InsightFaceRecognition Model
|
|
"""
|
|
self._preprocessor = C.vision.faceid.InsightFaceRecognitionPreprocessor(
|
|
)
|
|
|
|
def run(self, input_ims):
|
|
"""Preprocess input images for InsightFaceRecognition Model
|
|
|
|
:param: input_ims: (list of numpy.ndarray)The input image
|
|
:return: list of FDTensor, include image, scale_factor, im_shape
|
|
"""
|
|
return self._preprocessor.run(input_ims)
|
|
|
|
@property
|
|
def size(self):
|
|
"""
|
|
Argument for image preprocessing step, tuple of (width, height),
|
|
decide the target size after resize, default (112, 112)
|
|
"""
|
|
return self._preprocessor.size
|
|
|
|
@property
|
|
def alpha(self):
|
|
"""
|
|
Argument for image preprocessing step, alpha values for normalization,
|
|
default alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
|
"""
|
|
return self._preprocessor.alpha
|
|
|
|
@property
|
|
def beta(self):
|
|
"""
|
|
Argument for image preprocessing step, beta values for normalization,
|
|
default beta = {-1.f, -1.f, -1.f}
|
|
"""
|
|
return self._preprocessor.beta
|
|
|
|
def disable_normalize(self):
|
|
"""
|
|
This function will disable normalize in preprocessing step.
|
|
"""
|
|
self._preprocessor.disable_normalize()
|
|
|
|
def disable_permute(self):
|
|
"""
|
|
This function will disable hwc2chw in preprocessing step.
|
|
"""
|
|
self._preprocessor.disable_permute()
|
|
|
|
|
|
class InsightFaceRecognitionPostprocessor:
|
|
def __init__(self):
|
|
"""Create a postprocessor for InsightFaceRecognition Model
|
|
"""
|
|
self._postprocessor = C.vision.faceid.InsightFaceRecognitionPostprocessor(
|
|
)
|
|
|
|
def run(self, runtime_results):
|
|
"""Postprocess the runtime results for PaddleClas Model
|
|
|
|
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
|
:return: list of FaceRecognitionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
|
"""
|
|
return self._postprocessor.run(runtime_results)
|
|
|
|
@property
|
|
def l2_normalize(self):
|
|
"""
|
|
confidence threshold for postprocessing, default is 0.5
|
|
"""
|
|
return self._postprocessor.l2_normalize
|
|
|
|
|
|
class InsightFaceRecognitionBase(FastDeployModel):
|
|
def __init__(self,
|
|
model_file,
|
|
params_file="",
|
|
runtime_option=None,
|
|
model_format=ModelFormat.ONNX):
|
|
"""Load a InsightFaceRecognitionBase model exported by PaddleClas.
|
|
|
|
:param model_file: (str)Path of model file, e.g InsightFaceRecognitionBase/model.pdmodel
|
|
:param params_file: (str)Path of parameters file, e.g InsightFaceRecognitionBase/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
|
"""
|
|
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
|
self._model = C.vision.faceid.InsightFaceRecognitionBase(
|
|
model_file, params_file, self._runtime_option, model_format)
|
|
assert self.initialized, "InsightFaceRecognitionBase model initialize failed."
|
|
|
|
def predict(self, im):
|
|
"""Detect an input image
|
|
|
|
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:return: DetectionResult
|
|
"""
|
|
|
|
assert im is not None, "The input image data is None."
|
|
return self._model.predict(im)
|
|
|
|
def batch_predict(self, images):
|
|
"""Detect a batch of input image list
|
|
|
|
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
|
:return list of DetectionResult
|
|
"""
|
|
|
|
return self._model.batch_predict(images)
|
|
|
|
@property
|
|
def preprocessor(self):
|
|
"""Get InsightFaceRecognitionPreprocessor object of the loaded model
|
|
|
|
:return InsightFaceRecognitionPreprocessor
|
|
"""
|
|
return self._model.preprocessor
|
|
|
|
@property
|
|
def postprocessor(self):
|
|
"""Get InsightFaceRecognitionPostprocessor object of the loaded model
|
|
|
|
:return InsightFaceRecognitionPostprocessor
|
|
"""
|
|
return self._model.postprocessor
|
|
|
|
|
|
class ArcFace(InsightFaceRecognitionBase):
|
|
def __init__(self,
|
|
model_file,
|
|
params_file="",
|
|
runtime_option=None,
|
|
model_format=ModelFormat.ONNX):
|
|
"""Load a ArcFace model exported by PaddleClas.
|
|
:param model_file: (str)Path of model file, e.g ArcFace/model.pdmodel
|
|
:param params_file: (str)Path of parameters file, e.g ArcFace/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
|
"""
|
|
|
|
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
|
|
|
self._model = C.vision.faceid.ArcFace(
|
|
model_file, params_file, self._runtime_option, model_format)
|
|
assert self.initialized, "ArcFace model initialize failed."
|
|
|
|
|
|
class CosFace(InsightFaceRecognitionBase):
|
|
def __init__(self,
|
|
model_file,
|
|
params_file="",
|
|
runtime_option=None,
|
|
model_format=ModelFormat.ONNX):
|
|
"""Load a CosFace model exported by PaddleClas.
|
|
:param model_file: (str)Path of model file, e.g CosFace/model.pdmodel
|
|
:param params_file: (str)Path of parameters file, e.g CosFace/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
|
"""
|
|
|
|
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
|
|
|
self._model = C.vision.faceid.CosFace(
|
|
model_file, params_file, self._runtime_option, model_format)
|
|
assert self.initialized, "CosFace model initialize failed."
|
|
|
|
|
|
class PartialFC(InsightFaceRecognitionBase):
|
|
def __init__(self,
|
|
model_file,
|
|
params_file="",
|
|
runtime_option=None,
|
|
model_format=ModelFormat.ONNX):
|
|
"""Load a PartialFC model exported by PaddleClas.
|
|
:param model_file: (str)Path of model file, e.g PartialFC/model.pdmodel
|
|
:param params_file: (str)Path of parameters file, e.g PartialFC/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
|
"""
|
|
|
|
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
|
|
|
self._model = C.vision.faceid.PartialFC(
|
|
model_file, params_file, self._runtime_option, model_format)
|
|
assert self.initialized, "PartialFC model initialize failed."
|
|
|
|
|
|
class VPL(InsightFaceRecognitionBase):
|
|
def __init__(self,
|
|
model_file,
|
|
params_file="",
|
|
runtime_option=None,
|
|
model_format=ModelFormat.ONNX):
|
|
"""Load a VPL model exported by PaddleClas.
|
|
:param model_file: (str)Path of model file, e.g VPL/model.pdmodel
|
|
:param params_file: (str)Path of parameters file, e.g VPL/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
|
"""
|
|
|
|
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
|
|
|
self._model = C.vision.faceid.VPL(model_file, params_file,
|
|
self._runtime_option, model_format)
|
|
assert self.initialized, "VPL model initialize failed."
|