mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
147 lines
5.2 KiB
Python
147 lines
5.2 KiB
Python
from __future__ import absolute_import
|
|
from ... import c_lib_wrap as C
|
|
|
|
|
|
class Processor():
|
|
def __init__(self):
|
|
self.processor = None
|
|
|
|
def __call__(self, mat):
|
|
"""call for processing input.
|
|
|
|
:param mat: The input data FDMat or FDMatBatch.
|
|
"""
|
|
self.processor(mat)
|
|
|
|
|
|
class ResizeByShort(Processor):
|
|
def __init__(self, target_size: int, interp=1, use_scale=True, max_hw=[]):
|
|
"""Create a ResizeByShort operation with the given parameters.
|
|
|
|
:param target_size: The target short size to resize the image
|
|
:param interp: Optionally, the interpolation mode for resizing image
|
|
:param use_scale: Optionally, whether to scale image
|
|
:param max_hw: Max spatial size which is used by ResizeByShort
|
|
"""
|
|
self.processor = C.vision.processors.ResizeByShort(target_size, interp,
|
|
use_scale, max_hw)
|
|
|
|
|
|
class CenterCrop(Processor):
|
|
def __init__(self, width, height):
|
|
"""Create a CenterCrop operation with the given parameters.
|
|
|
|
:param width: Desired width of the cropped image
|
|
:param height: Desired height of the cropped image
|
|
"""
|
|
self.processor = C.vision.processors.CenterCrop(width, height)
|
|
|
|
|
|
class Pad(Processor):
|
|
def __init__(self, top: int, bottom: int, left: int, right: int, value=[]):
|
|
"""Create a Pad operation with the given parameters.
|
|
|
|
:param top: The top padding
|
|
:param bottom: The bottom padding
|
|
:param left: The left padding
|
|
:param right: The right padding
|
|
:param value: the value that is used to pad on the input image
|
|
"""
|
|
self.processor = C.vision.processors.Pad(top, bottom, left, right,
|
|
value)
|
|
|
|
|
|
class NormalizeAndPermute(Processor):
|
|
def __init__(self,
|
|
mean=[],
|
|
std=[],
|
|
is_scale=True,
|
|
min=[],
|
|
max=[],
|
|
swap_rb=False):
|
|
"""Creae a Normalize and a Permute operation with the given parameters.
|
|
|
|
:param mean: A list containing the mean of each channel
|
|
:param std: A list containing the standard deviation of each channel
|
|
:param is_scale: Specifies if the image are being scaled or not
|
|
:param min: A list containing the minimum value of each channel
|
|
:param max: A list containing the maximum value of each channel
|
|
"""
|
|
self.processor = C.vision.processors.NormalizeAndPermute(
|
|
mean, std, is_scale, min, max, swap_rb)
|
|
|
|
|
|
class Cast(Processor):
|
|
def __init__(self, dtype="float"):
|
|
"""Creat a new cast opereaton with given dtype
|
|
|
|
:param dtype: Target dtype of the output
|
|
"""
|
|
self.processor = C.vision.processors.Cast(dtype)
|
|
|
|
|
|
class HWC2CHW(Processor):
|
|
def __init__(self):
|
|
"""Creat a new hwc2chw processor with default dtype.
|
|
|
|
:return An instance of processor `HWC2CHW`
|
|
"""
|
|
self.processor = C.vision.processors.HWC2CHW()
|
|
|
|
|
|
class Normalize(Processor):
|
|
def __init__(self, mean, std, is_scale=True, min=[], max=[],
|
|
swap_rb=False):
|
|
"""Creat a new normalize opereator with given paremeters.
|
|
|
|
:param mean: A list containing the mean of each channel
|
|
:param std: A list containing the standard deviation of each channel
|
|
:param is_scale: Specifies if the image are being scaled or not
|
|
:param min: A list containing the minimum value of each channel
|
|
:param max: A list containing the maximum value of each channel
|
|
"""
|
|
self.processor = C.vision.processors.Normalize(mean, std, is_scale,
|
|
min, max, swap_rb)
|
|
|
|
|
|
class PadToSize(Processor):
|
|
def __init__(self, width, height, value=[]):
|
|
"""Create a new PadToSize opereator with given parameters.
|
|
|
|
:param width: Desired width of the output image
|
|
:param height: Desired height of the output image
|
|
:param value: Values to pad with
|
|
"""
|
|
self.processor = C.vision.processors.PadToSize(width, height, value)
|
|
|
|
|
|
class Resize(Processor):
|
|
def __init__(self,
|
|
width,
|
|
height,
|
|
scale_w=-1.0,
|
|
scale_h=-1.0,
|
|
interp=1,
|
|
use_scale=False):
|
|
"""Create a Resize operation with the given parameters.
|
|
|
|
:param width: Desired width of the output image
|
|
:param height: Desired height of the output image
|
|
:param scale_w: Scales the width in x-direction
|
|
:param scale_h: Scales the height in y-direction
|
|
:param interp: Optionally, the interpolation mode for resizing image
|
|
:param use_scale: Optionally, whether to scale image
|
|
"""
|
|
self.processor = C.vision.processors.Resize(width, height, scale_w,
|
|
scale_h, interp, use_scale)
|
|
|
|
|
|
class StridePad(Processor):
|
|
def __init__(self, stride, value=[]):
|
|
"""Create a StridePad processor with given parameters.
|
|
|
|
:param stride: Stride of the processor
|
|
:param value: Values to pad with
|
|
"""
|
|
self.processor = C.vision.processors.StridePad(stride, value)
|