mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* fix infer.py and README * [Example] Merge Download Paddle Model, Paddle->Onnx->Mlir->Bmodel and inference into infer.py. Modify README.md * modify pp_liteseg sophgo infer.py and README.md * fix PPOCR,PPYOLOE,PICODET,LITESEG sophgo infer.py and README.md * fix memory overflow problem while inferring with sophgo backend * fix memory overflow problem while inferring with sophgo backend --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: xuyizhou <yizhou.xu@sophgo.com>
308 lines
12 KiB
Python
308 lines
12 KiB
Python
import fastdeploy as fd
|
||
import cv2
|
||
import os
|
||
from subprocess import run
|
||
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--auto", required=True, help="Auto download, convert, compile and infer if True")
|
||
parser.add_argument(
|
||
"--det_model", required=True, help="Path of Detection model of PPOCR.")
|
||
parser.add_argument(
|
||
"--cls_model",
|
||
required=True,
|
||
help="Path of Classification model of PPOCR.")
|
||
parser.add_argument(
|
||
"--rec_model",
|
||
required=True,
|
||
help="Path of Recognization model of PPOCR.")
|
||
parser.add_argument(
|
||
"--rec_label_file",
|
||
required=True,
|
||
help="Path of Recognization label of PPOCR.")
|
||
parser.add_argument(
|
||
"--image", type=str, required=True, help="Path of test image file.")
|
||
|
||
return parser.parse_args()
|
||
|
||
|
||
def getPPOCRv3():
|
||
cmd_str_det = 'wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar'
|
||
tar_str_det = 'tar xvf ch_PP-OCRv3_det_infer.tar'
|
||
cmd_str_cls = 'wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar'
|
||
tar_str_cls = 'tar xvf ch_ppocr_mobile_v2.0_cls_infer.tar'
|
||
cmd_str_rec = 'wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar'
|
||
tar_str_rec = 'tar xvf ch_PP-OCRv3_rec_infer.tar'
|
||
cmd_str_img = 'wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg'
|
||
cmd_str_label = 'wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt'
|
||
script_str = 'wget https://raw.githubusercontent.com/PaddlePaddle/Paddle2ONNX/develop/tools/paddle/paddle_infer_shape.py'
|
||
if not os.path.exists('ch_PP-OCRv3_det_infer.tar'):
|
||
print(cmd_str_det, tar_str_det)
|
||
run(cmd_str_det, shell=True)
|
||
run(tar_str_det, shell=True)
|
||
if not os.path.exists('ch_ppocr_mobile_v2.0_cls_infer.tar'):
|
||
print(cmd_str_cls, tar_str_cls)
|
||
run(cmd_str_cls, shell=True)
|
||
run(tar_str_cls, shell=True)
|
||
if not os.path.exists('ch_PP-OCRv3_rec_infer.tar'):
|
||
print(cmd_str_rec, tar_str_rec)
|
||
run(cmd_str_rec, shell=True)
|
||
run(tar_str_rec, shell=True)
|
||
if not os.path.exists('12.jpg'):
|
||
print(cmd_str_img)
|
||
run(cmd_str_img, shell=True)
|
||
if not os.path.exists('ppocr_keys_v1.txt'):
|
||
print(cmd_str_label)
|
||
run(cmd_str_label, shell=True)
|
||
if not os.path.exists('paddle_infer_shape.py'):
|
||
print(script_str)
|
||
run(script_str, shell=True)
|
||
|
||
def fix_input_shape():
|
||
fix_det_str = 'python paddle_infer_shape.py --model_dir ch_PP-OCRv3_det_infer \
|
||
--model_filename inference.pdmodel \
|
||
--params_filename inference.pdiparams \
|
||
--save_dir ch_PP-OCRv3_det_infer_fix \
|
||
--input_shape_dict="{\'x\':[1,3,960,608]}"'
|
||
fix_rec_str = 'python paddle_infer_shape.py --model_dir ch_PP-OCRv3_rec_infer \
|
||
--model_filename inference.pdmodel \
|
||
--params_filename inference.pdiparams \
|
||
--save_dir ch_PP-OCRv3_rec_infer_fix \
|
||
--input_shape_dict="{\'x\':[1,3,48,320]}"'
|
||
fix_cls_str = 'python paddle_infer_shape.py --model_dir ch_ppocr_mobile_v2.0_cls_infer \
|
||
--model_filename inference.pdmodel \
|
||
--params_filename inference.pdiparams \
|
||
--save_dir ch_PP-OCRv3_cls_infer_fix \
|
||
--input_shape_dict="{\'x\':[1,3,48,192]}"'
|
||
print(fix_det_str)
|
||
run(fix_det_str, shell=True)
|
||
print(fix_rec_str)
|
||
run(fix_rec_str, shell=True)
|
||
print(fix_cls_str)
|
||
run(fix_cls_str, shell=True)
|
||
|
||
|
||
def paddle2onnx():
|
||
cmd_str_det = 'paddle2onnx --model_dir ch_PP-OCRv3_det_infer_fix \
|
||
--model_filename inference.pdmodel \
|
||
--params_filename inference.pdiparams \
|
||
--save_file ch_PP-OCRv3_det_infer.onnx \
|
||
--enable_dev_version True'
|
||
cmd_str_cls = 'paddle2onnx --model_dir ch_PP-OCRv3_cls_infer_fix \
|
||
--model_filename inference.pdmodel \
|
||
--params_filename inference.pdiparams \
|
||
--save_file ch_PP-OCRv3_cls_infer.onnx \
|
||
--enable_dev_version True'
|
||
cmd_str_rec = 'paddle2onnx --model_dir ch_PP-OCRv3_rec_infer_fix \
|
||
--model_filename inference.pdmodel \
|
||
--params_filename inference.pdiparams \
|
||
--save_file ch_PP-OCRv3_rec_infer.onnx \
|
||
--enable_dev_version True'
|
||
print(cmd_str_det)
|
||
run(cmd_str_det, shell=True)
|
||
print(cmd_str_cls)
|
||
run(cmd_str_cls, shell=True)
|
||
print(cmd_str_rec)
|
||
run(cmd_str_rec, shell=True)
|
||
|
||
def mlir_prepare():
|
||
mlir_path = os.getenv("MODEL_ZOO_PATH")
|
||
mlir_path = mlir_path[:-13]
|
||
regression_path = os.path.join(mlir_path, 'regression')
|
||
mv_str_list = ['mkdir ch_PP-OCRv3',
|
||
'cp -rf ' + os.path.join(regression_path, 'dataset/COCO2017/') + ' ./ch_PP-OCRv3',
|
||
'cp -rf ' + os.path.join(regression_path, 'image/') + ' ./ch_PP-OCRv3',
|
||
'mv ch_PP-OCRv3_det_infer.onnx ./ch_PP-OCRv3',
|
||
'mv ch_PP-OCRv3_rec_infer.onnx ./ch_PP-OCRv3',
|
||
'mv ch_PP-OCRv3_cls_infer.onnx ./ch_PP-OCRv3',
|
||
'mkdir ./ch_PP-OCRv3/workspace']
|
||
for str in mv_str_list:
|
||
print(str)
|
||
run(str, shell=True)
|
||
|
||
|
||
def onnx2mlir():
|
||
transform_str_det = 'model_transform.py \
|
||
--model_name ch_PP-OCRv3_det \
|
||
--model_def ../ch_PP-OCRv3_det_infer.onnx \
|
||
--input_shapes [[1,3,960,608]] \
|
||
--mean 0.0,0.0,0.0 \
|
||
--scale 0.0039216,0.0039216,0.0039216 \
|
||
--keep_aspect_ratio \
|
||
--pixel_format rgb \
|
||
--output_names sigmoid_0.tmp_0 \
|
||
--test_input ../image/dog.jpg \
|
||
--test_result ch_PP-OCRv3_det_top_outputs.npz \
|
||
--mlir ./ch_PP-OCRv3_det.mlir'
|
||
transform_str_rec = 'model_transform.py \
|
||
--model_name ch_PP-OCRv3_rec \
|
||
--model_def ../ch_PP-OCRv3_rec_infer.onnx \
|
||
--input_shapes [[1,3,48,320]] \
|
||
--mean 0.0,0.0,0.0 \
|
||
--scale 0.0039216,0.0039216,0.0039216 \
|
||
--keep_aspect_ratio \
|
||
--pixel_format rgb \
|
||
--output_names softmax_5.tmp_0 \
|
||
--test_input ../image/dog.jpg \
|
||
--test_result ch_PP-OCRv3_rec_top_outputs.npz \
|
||
--mlir ./ch_PP-OCRv3_rec.mlir'
|
||
transform_str_cls = 'model_transform.py \
|
||
--model_name ch_PP-OCRv3_cls \
|
||
--model_def ../ch_PP-OCRv3_cls_infer.onnx \
|
||
--input_shapes [[1,3,48,192]] \
|
||
--mean 0.0,0.0,0.0 \
|
||
--scale 0.0039216,0.0039216,0.0039216 \
|
||
--keep_aspect_ratio \
|
||
--pixel_format rgb \
|
||
--output_names softmax_0.tmp_0 \
|
||
--test_input ../image/dog.jpg \
|
||
--test_result ch_PP-OCRv3_cls_top_outputs.npz \
|
||
--mlir ./ch_PP-OCRv3_cls.mlir'
|
||
|
||
os.chdir('./ch_PP-OCRv3/workspace/')
|
||
|
||
print(transform_str_det)
|
||
run(transform_str_det, shell=True)
|
||
|
||
print(transform_str_rec)
|
||
run(transform_str_rec, shell=True)
|
||
|
||
print(transform_str_cls)
|
||
run(transform_str_cls, shell=True)
|
||
|
||
os.chdir('../../')
|
||
|
||
def mlir2bmodel():
|
||
det_str = 'model_deploy.py \
|
||
--mlir ./ch_PP-OCRv3_det.mlir \
|
||
--quantize F32 \
|
||
--chip bm1684x \
|
||
--test_input ./ch_PP-OCRv3_det_in_f32.npz \
|
||
--test_reference ./ch_PP-OCRv3_det_top_outputs.npz \
|
||
--model ./ch_PP-OCRv3_det_1684x_f32.bmodel'
|
||
rec_str = 'model_deploy.py \
|
||
--mlir ./ch_PP-OCRv3_rec.mlir \
|
||
--quantize F32 \
|
||
--chip bm1684x \
|
||
--test_input ./ch_PP-OCRv3_rec_in_f32.npz \
|
||
--test_reference ./ch_PP-OCRv3_rec_top_outputs.npz \
|
||
--model ./ch_PP-OCRv3_rec_1684x_f32.bmodel'
|
||
cls_str = 'model_deploy.py \
|
||
--mlir ./ch_PP-OCRv3_cls.mlir \
|
||
--quantize F32 \
|
||
--chip bm1684x \
|
||
--test_input ./ch_PP-OCRv3_cls_in_f32.npz \
|
||
--test_reference ./ch_PP-OCRv3_cls_top_outputs.npz \
|
||
--model ./ch_PP-OCRv3_cls_1684x_f32.bmodel'
|
||
os.chdir('./ch_PP-OCRv3/workspace/')
|
||
print(det_str)
|
||
run(det_str, shell=True)
|
||
|
||
print(rec_str)
|
||
run(rec_str, shell=True)
|
||
|
||
print(cls_str)
|
||
run(cls_str, shell=True)
|
||
os.chdir('../../')
|
||
|
||
args = parse_arguments()
|
||
|
||
if (args.auto):
|
||
getPPOCRv3()
|
||
fix_input_shape()
|
||
paddle2onnx()
|
||
mlir_prepare()
|
||
onnx2mlir()
|
||
mlir2bmodel()
|
||
|
||
# 配置runtime,加载模型
|
||
runtime_option = fd.RuntimeOption()
|
||
runtime_option.use_sophgo()
|
||
|
||
# Detection模型, 检测文字框
|
||
det_model_file = './ch_PP-OCRv3/workspace/ch_PP-OCRv3_det_1684x_f32.bmodel' if args.auto else args.det_model
|
||
det_params_file = ""
|
||
# Classification模型,方向分类,可选
|
||
cls_model_file = './ch_PP-OCRv3/workspace/ch_PP-OCRv3_cls_1684x_f32.bmodel' if args.auto else args.cls_model
|
||
cls_params_file = ""
|
||
# Recognition模型,文字识别模型
|
||
rec_model_file = './ch_PP-OCRv3/workspace/ch_PP-OCRv3_rec_1684x_f32.bmodel' if args.auto else args.rec_model
|
||
rec_params_file = ""
|
||
rec_label_file = './ppocr_keys_v1.txt' if args.auto else args.rec_label_file
|
||
image_file = './12.jpg' if args.auto else args.image
|
||
|
||
# PPOCR的cls和rec模型现在已经支持推理一个Batch的数据
|
||
# 定义下面两个变量后, 可用于设置trt输入shape, 并在PPOCR模型初始化后, 完成Batch推理设置
|
||
cls_batch_size = 1
|
||
rec_batch_size = 1
|
||
|
||
# 当使用TRT时,分别给三个模型的runtime设置动态shape,并完成模型的创建.
|
||
# 注意: 需要在检测模型创建完成后,再设置分类模型的动态输入并创建分类模型, 识别模型同理.
|
||
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
|
||
det_option = runtime_option
|
||
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
|
||
[1, 3, 960, 960])
|
||
# 用户可以把TRT引擎文件保存至本地
|
||
# det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
|
||
det_model = fd.vision.ocr.DBDetector(
|
||
det_model_file,
|
||
det_params_file,
|
||
runtime_option=det_option,
|
||
model_format=fd.ModelFormat.SOPHGO)
|
||
|
||
cls_option = runtime_option
|
||
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
|
||
[cls_batch_size, 3, 48, 320],
|
||
[cls_batch_size, 3, 48, 1024])
|
||
# 用户可以把TRT引擎文件保存至本地
|
||
# cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
|
||
cls_model = fd.vision.ocr.Classifier(
|
||
cls_model_file,
|
||
cls_params_file,
|
||
runtime_option=cls_option,
|
||
model_format=fd.ModelFormat.SOPHGO)
|
||
|
||
rec_option = runtime_option
|
||
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
|
||
[rec_batch_size, 3, 48, 320],
|
||
[rec_batch_size, 3, 48, 2304])
|
||
# 用户可以把TRT引擎文件保存至本地
|
||
# rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
|
||
rec_model = fd.vision.ocr.Recognizer(
|
||
rec_model_file,
|
||
rec_params_file,
|
||
rec_label_file,
|
||
runtime_option=rec_option,
|
||
model_format=fd.ModelFormat.SOPHGO)
|
||
|
||
# 创建PP-OCR,串联3个模型,其中cls_model可选,如无需求,可设置为None
|
||
ppocr_v3 = fd.vision.ocr.PPOCRv3(
|
||
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
|
||
|
||
# 需要使用下行代码, 来启用rec模型的静态shape推理,这里rec模型的静态输入为[3, 48, 320]
|
||
rec_model.preprocessor.static_shape_infer = True
|
||
rec_model.preprocessor.rec_image_shape = [3, 48, 320]
|
||
|
||
# 给cls和rec模型设置推理时的batch size
|
||
# 此值能为-1, 和1到正无穷
|
||
# 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同
|
||
ppocr_v3.cls_batch_size = cls_batch_size
|
||
ppocr_v3.rec_batch_size = rec_batch_size
|
||
|
||
# 预测图片准备
|
||
im = cv2.imread(image_file)
|
||
|
||
#预测并打印结果
|
||
result = ppocr_v3.predict(im)
|
||
|
||
print(result)
|
||
|
||
# 可视化结果
|
||
vis_im = fd.vision.vis_ppocr(im, result)
|
||
cv2.imwrite("sophgo_result.jpg", vis_im)
|
||
print("Visualized result save in ./sophgo_result.jpg")
|