mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* first draft * update api name * fix bug * fix bug and * fix bug in c api * fix bug in c_api --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
176 lines
6.0 KiB
Python
Executable File
176 lines
6.0 KiB
Python
Executable File
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import fastdeploy as fd
|
|
import cv2
|
|
import os
|
|
|
|
|
|
def parse_arguments():
|
|
import argparse
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--det_model", required=True, help="Path of Detection model of PPOCR.")
|
|
parser.add_argument(
|
|
"--rec_model",
|
|
required=True,
|
|
help="Path of Recognization model of PPOCR.")
|
|
parser.add_argument(
|
|
"--table_model",
|
|
required=True,
|
|
help="Path of Table recognition model of PPOCR.")
|
|
parser.add_argument(
|
|
"--rec_label_file",
|
|
required=True,
|
|
help="Path of Recognization model of PPOCR.")
|
|
parser.add_argument(
|
|
"--table_char_dict_path",
|
|
type=str,
|
|
required=True,
|
|
help="tabel recognition dict path.")
|
|
parser.add_argument(
|
|
"--rec_bs",
|
|
type=int,
|
|
default=6,
|
|
help="Recognition model inference batch size")
|
|
parser.add_argument(
|
|
"--image", type=str, required=True, help="Path of test image file.")
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default='cpu',
|
|
help="Type of inference device, support 'cpu' or 'gpu'.")
|
|
parser.add_argument(
|
|
"--device_id",
|
|
type=int,
|
|
default=0,
|
|
help="Define which GPU card used to run model.")
|
|
parser.add_argument(
|
|
"--backend",
|
|
type=str,
|
|
default="default",
|
|
help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu"
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def build_option(args):
|
|
det_option = fd.RuntimeOption()
|
|
rec_option = fd.RuntimeOption()
|
|
table_option = fd.RuntimeOption()
|
|
|
|
if args.device.lower() == "gpu":
|
|
det_option.use_gpu(args.device_id)
|
|
rec_option.use_gpu(args.device_id)
|
|
table_option.use_gpu(args.device_id)
|
|
|
|
if args.backend.lower() == "trt":
|
|
assert args.device.lower(
|
|
) == "gpu", "TensorRT backend require inference on device GPU."
|
|
det_option.use_trt_backend()
|
|
rec_option.use_trt_backend()
|
|
table_option.use_trt_backend()
|
|
|
|
# If use TRT backend, the dynamic shape will be set as follow.
|
|
# We recommend that users set the length and height of the detection model to a multiple of 32.
|
|
# We also recommend that users set the Trt input shape as follow.
|
|
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
|
|
[1, 3, 960, 960])
|
|
|
|
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
|
|
[args.rec_bs, 3, 48, 320],
|
|
[args.rec_bs, 3, 48, 2304])
|
|
|
|
table_option.set_trt_input_shape("x", [1, 3, 488, 488])
|
|
|
|
# Users could save TRT cache file to disk as follow.
|
|
det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
|
|
rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
|
|
table_option.set_trt_cache_file(args.table_model +
|
|
"/table_trt_cache.trt")
|
|
|
|
elif args.backend.lower() == "ort":
|
|
det_option.use_ort_backend()
|
|
rec_option.use_ort_backend()
|
|
table_option.use_ort_backend()
|
|
|
|
elif args.backend.lower() == "paddle":
|
|
det_option.use_paddle_infer_backend()
|
|
rec_option.use_paddle_infer_backend()
|
|
table_option.use_paddle_infer_backend()
|
|
|
|
elif args.backend.lower() == "openvino":
|
|
assert args.device.lower(
|
|
) == "cpu", "OpenVINO backend require inference on device CPU."
|
|
det_option.use_openvino_backend()
|
|
rec_option.use_openvino_backend()
|
|
table_option.use_openvino_backend()
|
|
|
|
return det_option, rec_option, table_option
|
|
|
|
|
|
args = parse_arguments()
|
|
|
|
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
|
|
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
|
|
|
|
rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
|
|
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
|
|
rec_label_file = args.rec_label_file
|
|
|
|
table_model_file = os.path.join(args.table_model, "inference.pdmodel")
|
|
table_params_file = os.path.join(args.table_model, "inference.pdiparams")
|
|
table_char_dict_path = args.table_char_dict_path
|
|
|
|
# Set the runtime option
|
|
det_option, rec_option, table_option = build_option(args)
|
|
|
|
det_model = fd.vision.ocr.DBDetector(
|
|
det_model_file, det_params_file, runtime_option=det_option)
|
|
|
|
rec_model = fd.vision.ocr.Recognizer(
|
|
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
|
|
|
|
table_model = fd.vision.ocr.StructureV2Table(
|
|
table_model_file,
|
|
table_params_file,
|
|
table_char_dict_path,
|
|
runtime_option=table_option)
|
|
|
|
det_model.preprocessor.max_side_len = 960
|
|
det_model.postprocessor.det_db_thresh = 0.3
|
|
det_model.postprocessor.det_db_box_thresh = 0.6
|
|
det_model.postprocessor.det_db_unclip_ratio = 1.5
|
|
det_model.postprocessor.det_db_score_mode = "slow"
|
|
det_model.postprocessor.use_dilation = False
|
|
|
|
ppstructurev2_table = fd.vision.ocr.PPStructureV2Table(
|
|
det_model=det_model, rec_model=rec_model, table_model=table_model)
|
|
|
|
ppstructurev2_table.rec_batch_size = args.rec_bs
|
|
|
|
# Read the input image
|
|
im = cv2.imread(args.image)
|
|
|
|
# Predict and reutrn the results
|
|
result = ppstructurev2_table.predict(im)
|
|
|
|
print(result)
|
|
|
|
# Visuliaze the results.
|
|
vis_im = fd.vision.vis_ppocr(im, result)
|
|
cv2.imwrite("visualized_result.jpg", vis_im)
|
|
print("Visualized result save in ./visualized_result.jpg")
|