Files
FastDeploy/examples/vision/classification/ppshitu/cpu-gpu/cpp/infer_ppshituv2_det.cc
DefTruth 77cb9db6da [Model] Support PP-ShiTuV2 models for PaddleClas (#1900)
* [cmake] add faiss.cmake -> pp-shituv2

* [PP-ShiTuV2] Support PP-ShituV2-Det model

* [PP-ShiTuV2] Support PP-ShiTuV2-Det model

* [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support

* [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support

* [Bug Fix] fix ppshitu_pybind error

* [benchmark] Add ppshituv2-det c++ benchmark

* [examples] Add PP-ShiTuV2 det & rec examples

* [vision] Update vision classification result

* [Bug Fix] fix trt shapes setting errors
2023-05-08 14:04:09 +08:00

97 lines
3.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void InitAndInfer(const std::string &model_dir, const std::string &image_file,
const fastdeploy::RuntimeOption &option) {
auto model_file = model_dir + sep + "inference.pdmodel";
auto params_file = model_dir + sep + "inference.pdiparams";
auto config_file = model_dir + sep + "infer_cfg.yml";
auto model = fastdeploy::vision::classification::PPShiTuV2Detector(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// print res
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char *argv[]) {
if (argc < 4) {
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
"e.g ./infer_demo "
"./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer ./test.jpeg 0"
<< std::endl;
return -1;
}
fastdeploy::RuntimeOption option;
int flag = std::atoi(argv[3]);
if (flag == 0) {
option.UseCpu();
option.UsePaddleBackend(); // Paddle Inference
} else if (flag == 1) {
option.UseCpu();
option.UseOpenVINOBackend(); // OpenVINO
} else if (flag == 2) {
option.UseCpu();
option.UseOrtBackend(); // ONNX Runtime
} else if (flag == 3) {
option.UseCpu();
option.UseLiteBackend(); // Paddle Lite
} else if (flag == 4) {
option.UseGpu();
option.UsePaddleBackend(); // Paddle Inference
} else if (flag == 5) {
option.UseGpu();
option.UsePaddleInferBackend();
option.paddle_infer_option.enable_trt = true;
option.trt_option.SetShape("image", {1, 3, 640, 640}, {1, 3, 640, 640},
{1, 3, 640, 640});
option.trt_option.SetShape("scale_factor", {1, 2}, {1, 2}, {1, 2});
option.trt_option.SetShape("im_shape", {1, 2}, {1, 2}, {1, 2});
} else if (flag == 6) {
option.UseGpu();
option.UseOrtBackend(); // ONNX Runtime
} else if (flag == 7) {
option.UseGpu();
option.UseTrtBackend(); // TensorRT
}
std::string model_dir = argv[1];
std::string image_dir = argv[2];
InitAndInfer(model_dir, image_dir, option);
}