mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-11-03 11:02:01 +08:00
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Co-authored-by: SunLei <sunlei5788@gmail.com>
118 lines
4.0 KiB
Python
118 lines
4.0 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from collections.abc import AsyncGenerator
|
|
|
|
from typing_extensions import override
|
|
|
|
from fastdeploy.engine.pooling_params import PoolingParams
|
|
from fastdeploy.engine.request import PoolingRequestOutput, RewardRequestOutput
|
|
from fastdeploy.entrypoints.openai.protocol import (
|
|
ChatRewardData,
|
|
ChatRewardRequest,
|
|
ChatRewardResponse,
|
|
UsageInfo,
|
|
)
|
|
from fastdeploy.entrypoints.openai.serving_engine import ServeContext, ZmqOpenAIServing
|
|
from fastdeploy.utils import api_server_logger
|
|
|
|
|
|
class OpenAIServingReward(ZmqOpenAIServing):
|
|
request_id_prefix = "reward"
|
|
|
|
"""
|
|
OpenAI-style reward serving using pipeline pattern
|
|
"""
|
|
|
|
def __init__(self, engine_client, models, cfg, pid, ips, max_waiting_time, chat_template):
|
|
super().__init__(engine_client, models, cfg, pid, ips, max_waiting_time, chat_template)
|
|
|
|
@override
|
|
def _request_to_dict(self, ctx: ServeContext):
|
|
request: ChatRewardRequest = ctx.request
|
|
request_dict = super()._request_to_dict(ctx)
|
|
if hasattr(request, "to_pooling_params"):
|
|
pooling_params: PoolingParams = request.to_pooling_params()
|
|
pooling_params.verify("reward", self.cfg.model_config)
|
|
request_dict["pooling_params"] = pooling_params.to_dict()
|
|
return request_dict
|
|
|
|
@override
|
|
def _request_to_batch_dicts(self, ctx: ServeContext):
|
|
"""
|
|
Convert the request into dictionary format that can be sent to the inference server
|
|
"""
|
|
request_dict = self._request_to_dict(ctx)
|
|
request_dict["request_id"] = f"{ctx.request_id}_0"
|
|
request_dicts = [request_dict]
|
|
return request_dicts
|
|
|
|
async def create_reward(self, request: ChatRewardRequest):
|
|
"""
|
|
Create embeddings for the input texts using the pipeline pattern
|
|
"""
|
|
request_id = self._generate_request_id(getattr(request, "user", None))
|
|
|
|
ctx = ServeContext[ChatRewardRequest](
|
|
request=request,
|
|
model_name=request.model,
|
|
request_id=request_id,
|
|
)
|
|
idx = 0
|
|
response: ChatRewardResponse = None
|
|
generators: AsyncGenerator[ChatRewardResponse, None] = self.handle(ctx)
|
|
async for r in generators:
|
|
r.data[0].index = idx
|
|
idx += 1
|
|
if response is None:
|
|
response = r
|
|
else:
|
|
response.data.append(r.data[0])
|
|
response.usage.prompt_tokens += r.usage.prompt_tokens
|
|
response.usage.total_tokens += r.usage.total_tokens
|
|
|
|
return response
|
|
|
|
@override
|
|
def _build_response(self, ctx: ServeContext):
|
|
"""Generate final reward response"""
|
|
api_server_logger.info(f"[{ctx.request_id}] Reward RequestOutput received:{ctx.request_output}")
|
|
|
|
base = PoolingRequestOutput.from_dict(ctx.request_output)
|
|
reward_res = RewardRequestOutput.from_base(base)
|
|
|
|
data = ChatRewardData(
|
|
index=0,
|
|
score=reward_res.outputs.score,
|
|
)
|
|
|
|
num_prompt_tokens = 0
|
|
if reward_res.prompt_token_ids:
|
|
num_prompt_tokens = len(reward_res.prompt_token_ids)
|
|
|
|
usage = UsageInfo(
|
|
prompt_tokens=num_prompt_tokens,
|
|
total_tokens=num_prompt_tokens,
|
|
)
|
|
|
|
return ChatRewardResponse(
|
|
id=ctx.request_id,
|
|
created=ctx.created_time,
|
|
model=ctx.model_name,
|
|
data=[data],
|
|
usage=usage,
|
|
)
|