mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
280 lines
10 KiB
Python
280 lines
10 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
import os
|
|
from dataclasses import dataclass
|
|
from dataclasses import field
|
|
from typing import List
|
|
|
|
|
|
@dataclass
|
|
class PredictorArgument:
|
|
model_name_or_path: str = field(
|
|
default=None, metadata={"help": "The directory of model."})
|
|
model_prefix: str = field(
|
|
default="model", metadata={"help": "the prefix name of static model"})
|
|
src_length: int = field(
|
|
default=None, metadata={"help": "The max length of source text."})
|
|
min_length: int = field(default=1,
|
|
metadata={"help": "the min length for decoding."})
|
|
max_length: int = field(default=1024,
|
|
metadata={"help": "the max length for decoding."})
|
|
top_k: int = field(default=0,
|
|
metadata={"help": "top_k parameter for generation"})
|
|
top_p: float = field(default=0.7,
|
|
metadata={"help": "top_p parameter for generation"})
|
|
temperature: float = field(
|
|
default=0.95,
|
|
metadata={"help": "temperature parameter for generation"})
|
|
repetition_penalty: float = field(
|
|
default=1.0,
|
|
metadata={"help": "repetition penalty parameter for generation"})
|
|
device: str = field(default="gpu", metadata={"help": "Device"})
|
|
dtype: str = field(default=None, metadata={"help": "Model dtype"})
|
|
lora_path: str = field(
|
|
default=None,
|
|
metadata={"help": "The directory of LoRA parameters. Default to None"})
|
|
export_precache: bool = field(
|
|
default=False,
|
|
metadata={"help": "whether use prefix weight to do infer"})
|
|
prefix_path: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help":
|
|
"The directory of Prefix Tuning parameters. Default to None"
|
|
})
|
|
decode_strategy: str = field(
|
|
default="sampling",
|
|
metadata={
|
|
"help":
|
|
"the decoding strategy of generation, which should be one of "
|
|
"['sampling', 'greedy_search', 'beam_search']. Default to sampling"
|
|
},
|
|
)
|
|
use_flash_attention: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether to use flash attention"},
|
|
)
|
|
|
|
mode: str = field(
|
|
default="dynamic",
|
|
metadata={
|
|
"help":
|
|
"the type of predictor, it should be one of [dynamic, static]"
|
|
})
|
|
inference_model: bool = field(
|
|
default=False,
|
|
metadata={"help": "whether use InferenceModel to do generation"})
|
|
quant_type: str = field(
|
|
default="",
|
|
metadata={
|
|
"help":
|
|
"Quantization type. Supported values: a8w8, a8w8c8, a8w8_fp8, "
|
|
"a8w8c8_fp8, weight_only_int4, weight_only_int8"
|
|
},
|
|
)
|
|
avx_model: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help":
|
|
"whether use AvxModel to do generation when using cpu inference"
|
|
})
|
|
avx_type: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help":
|
|
"avx compute type. Supported values: fp16, bf16,fp16_int8\
|
|
fp16: first_token and next_token run in fp16\
|
|
fp16_int8 : first_token run in fp16, next token run in int8"
|
|
},
|
|
)
|
|
avx_cachekv_type: str = field(
|
|
default="fp16",
|
|
metadata={"help": "avx cachekv type. Supported values: fp16,int8"},
|
|
)
|
|
batch_size: int = field(default=1,
|
|
metadata={"help": "The batch size of data."})
|
|
benchmark: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help":
|
|
"If benchmark set as `True`, we will force model decode to max_length, "
|
|
"which is helpful to compute throughput. "
|
|
},
|
|
)
|
|
use_fake_parameter: bool = field(
|
|
default=False,
|
|
metadata={"help": "use fake parameter, for ptq scales now."})
|
|
block_attn: bool = field(default=False,
|
|
metadata={"help": "whether use block attention"})
|
|
block_size: int = field(default=64,
|
|
metadata={"help": "the block size for cache_kvs."})
|
|
cachekv_int8_type: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help":
|
|
"If cachekv_int8_type set as `dynamic`, cache kv would be quantized to "
|
|
"int8 dynamically. If cachekv_int8_type set as `static`, cache kv would "
|
|
"be quantized to int8 Statically."
|
|
},
|
|
)
|
|
|
|
append_attn: bool = field(
|
|
default=False, metadata={"help": "whether use append attention"})
|
|
|
|
chat_template: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help":
|
|
"the path of `chat_template.json` file to handle multi-rounds conversation. "
|
|
"If is None(do not set --chat_template argument), it will use the default `chat_template.json`;"
|
|
"If is equal with `model_name_or_path`, it will use the default loading; "
|
|
"If is directory, it will find the `chat_template.json` under the directory; If is file, it will load it."
|
|
"If is none string, it will not use chat_template.json."
|
|
},
|
|
)
|
|
|
|
total_max_length: int = field(
|
|
default=4096,
|
|
metadata={
|
|
"help":
|
|
"Super parameter. Maximum sequence length(encoder+decoder)."
|
|
})
|
|
speculate_method: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help":
|
|
"speculate method, it should be one of ['None', 'inference_with_reference', 'eagle', 'mtp']"
|
|
},
|
|
)
|
|
speculate_max_draft_token_num: int = field(
|
|
default=1,
|
|
metadata={
|
|
"help": "the max length of draft tokens for speculate method."
|
|
},
|
|
)
|
|
speculate_max_ngram_size: int = field(
|
|
default=1,
|
|
metadata={"help": "the max ngram size of speculate method."})
|
|
speculate_verify_window: int = field(
|
|
default=2,
|
|
metadata={
|
|
"help": "the max length of verify window for speculate method."
|
|
})
|
|
speculate_max_candidate_len: int = field(
|
|
default=5, metadata={"help": "the max length of candidate tokens."})
|
|
draft_model_name_or_path: str = field(
|
|
default=None,
|
|
metadata={"help": "The directory of eagle or draft model"})
|
|
draft_model_quant_type: str = field(
|
|
default="",
|
|
metadata={
|
|
"help": "Draft model quantization type. Reserved for future"
|
|
},
|
|
)
|
|
return_full_hidden_states: bool = field(
|
|
default=False, metadata={"help": "whether return full hidden_states"})
|
|
|
|
mla_use_matrix_absorption: bool = field(
|
|
default=False,
|
|
metadata={"help": "implement mla with matrix-absorption."})
|
|
weightonly_group_size: int = field(
|
|
default=-1, metadata={"help": "the max length of candidate tokens."})
|
|
weight_block_size: List[int] = field(
|
|
default_factory=lambda: [128, 128],
|
|
metadata={
|
|
"help":
|
|
"Quantitative granularity of weights. Supported values: [128 128]"
|
|
},
|
|
)
|
|
moe_quant_type: str = field(
|
|
default="",
|
|
metadata={
|
|
"help":
|
|
"Quantization type of moe. Supported values: weight_only_int4, weight_only_int8"
|
|
},
|
|
)
|
|
output_via_mq: bool = field(
|
|
default=True,
|
|
metadata={
|
|
"help": "Controls whether the message queue is enabled for output"
|
|
},
|
|
)
|
|
dynamic_insert: bool = field(
|
|
default=False, metadata={"help": "whether use dynamic insert"})
|
|
total_request_num: int = field(
|
|
default=None, metadata={"help": "The total number of request data"})
|
|
|
|
def __post_init__(self):
|
|
if self.speculate_method is not None:
|
|
self.append_attn = True
|
|
if self.append_attn:
|
|
self.block_attn = True
|
|
if self.block_attn:
|
|
self.inference_model = True
|
|
assert self.max_length < self.total_max_length, "max_length should smaller than total_max_length."
|
|
if self.src_length is None:
|
|
self.src_length = self.total_max_length - self.max_length
|
|
# update config parameter for inference predictor
|
|
if self.decode_strategy == "greedy_search":
|
|
self.top_p = 0.0
|
|
self.temperature = 1.0
|
|
|
|
|
|
@dataclass
|
|
class ModelArgument:
|
|
model_type: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help":
|
|
"the type of the model, which can be one of ['gpt-3', 'ernie-3.5-se', 'llama-img2txt']"
|
|
},
|
|
)
|
|
data_file: str = field(default=None,
|
|
metadata={"help": "data file directory"})
|
|
output_file: str = field(
|
|
default="output.json",
|
|
metadata={"help": "predict result file directory"})
|
|
|
|
|
|
def check_safetensors_model(model_dir):
|
|
"""Check whther the model is safetensors format"""
|
|
model_files = list()
|
|
all_files = os.listdir(model_dir)
|
|
for x in all_files:
|
|
if x.startswith("model") and x.endswith(".safetensors"):
|
|
model_files.append(x)
|
|
|
|
is_safetensors = len(model_files) > 0
|
|
if not is_safetensors:
|
|
return False
|
|
|
|
if len(model_files) == 1 and model_files[0] == "model.safetensors":
|
|
return True
|
|
try:
|
|
# check all the file exists
|
|
safetensors_num = int(
|
|
model_files[0].strip(".safetensors").split("-")[-1])
|
|
flags = [0] * safetensors_num
|
|
for x in model_files:
|
|
current_index = int(x.strip(".safetensors").split("-")[1])
|
|
flags[current_index - 1] = 1
|
|
assert (
|
|
sum(flags) == safetensors_num
|
|
), f"Number of safetensor files should be {len(model_files)}, but now it's {sum(flags)}"
|
|
except Exception as e:
|
|
raise Exception(f"Failed to check unified checkpoint, details: {e}.")
|
|
return is_safetensors
|