mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	 866d044898
			
		
	
	866d044898
	
	
	
		
			
			* model done, CLA fix * remove letter_box and ConvertAndPermute, use resize hwc2chw and convert in preprocess * remove useless values in preprocess * remove useless values in preprocess * fix reviewed problem * fix reviewed problem pybind * fix reviewed problem pybind * postprocess fix * add test_fastestdet.py, coco_val2017_500 fixed done, ready to review * fix reviewed problem * python/.../fastestdet.py * fix infer.cc, preprocess, python/fastestdet.py * fix examples/python/infer.py
		
			
				
	
	
		
			111 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from fastdeploy import ModelFormat
 | |
| import fastdeploy as fd
 | |
| import cv2
 | |
| import os
 | |
| import pickle
 | |
| import numpy as np
 | |
| import runtime_config as rc
 | |
| 
 | |
| 
 | |
| def test_detection_fastestdet():
 | |
|     model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/FastestDet.onnx"
 | |
|     input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
 | |
|     input_url2 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000570688.jpg"
 | |
|     result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/fastestdet_result1.pkl"
 | |
|     fd.download(model_url, "resources")
 | |
|     fd.download(input_url1, "resources")
 | |
|     fd.download(input_url2, "resources")
 | |
|     fd.download(result_url1, "resources")
 | |
| 
 | |
|     model_file = "resources/FastestDet.onnx"
 | |
|     model = fd.vision.detection.FastestDet(
 | |
|         model_file, runtime_option=rc.test_option)
 | |
| 
 | |
|     with open("resources/fastestdet_result1.pkl", "rb") as f:
 | |
|         expect1 = pickle.load(f)
 | |
| 
 | |
|     # compare diff
 | |
|     im1 = cv2.imread("./resources/000000014439.jpg")
 | |
|     print(expect1)
 | |
|     for i in range(3):
 | |
|         # test single predict
 | |
|         result1 = model.predict(im1)
 | |
| 
 | |
|         diff_boxes_1 = np.fabs(
 | |
|             np.array(result1.boxes) - np.array(expect1["boxes"]))
 | |
| 
 | |
|         diff_label_1 = np.fabs(
 | |
|             np.array(result1.label_ids) - np.array(expect1["label_ids"]))
 | |
|         diff_scores_1 = np.fabs(
 | |
|             np.array(result1.scores) - np.array(expect1["scores"]))
 | |
| 
 | |
|         print(diff_boxes_1.max(), diff_boxes_1.mean())
 | |
|         assert diff_boxes_1.max(
 | |
|         ) < 1e-04, "There's difference in detection boxes 1."
 | |
|         assert diff_label_1.max(
 | |
|         ) < 1e-04, "There's difference in detection label 1."
 | |
|         assert diff_scores_1.max(
 | |
|         ) < 1e-05, "There's difference in detection score 1."
 | |
| 
 | |
| def test_detection_fastestdet_runtime():
 | |
|     model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/FastestDet.onnx"
 | |
|     input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
 | |
|     result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/fastestdet_result1.pkl"
 | |
|     fd.download(model_url, "resources")
 | |
|     fd.download(input_url1, "resources")
 | |
|     fd.download(result_url1, "resources")
 | |
| 
 | |
|     model_file = "resources/FastestDet.onnx"
 | |
| 
 | |
|     preprocessor = fd.vision.detection.FastestDetPreprocessor()
 | |
|     postprocessor = fd.vision.detection.FastestDetPostprocessor()
 | |
| 
 | |
|     rc.test_option.set_model_path(model_file, model_format=ModelFormat.ONNX)
 | |
|     rc.test_option.use_openvino_backend()
 | |
|     runtime = fd.Runtime(rc.test_option)
 | |
| 
 | |
|     with open("resources/fastestdet_result1.pkl", "rb") as f:
 | |
|         expect1 = pickle.load(f)
 | |
| 
 | |
|     # compare diff
 | |
|     im1 = cv2.imread("./resources/000000014439.jpg")
 | |
| 
 | |
|     for i in range(3):
 | |
|         # test runtime
 | |
|         input_tensors, ims_info = preprocessor.run([im1.copy()])
 | |
|         output_tensors = runtime.infer({"input.1": input_tensors[0]})
 | |
|         results = postprocessor.run(output_tensors, ims_info)
 | |
|         result1 = results[0]
 | |
| 
 | |
|         diff_boxes_1 = np.fabs(
 | |
|             np.array(result1.boxes) - np.array(expect1["boxes"]))
 | |
|         diff_label_1 = np.fabs(
 | |
|             np.array(result1.label_ids) - np.array(expect1["label_ids"]))
 | |
|         diff_scores_1 = np.fabs(
 | |
|             np.array(result1.scores) - np.array(expect1["scores"]))
 | |
| 
 | |
|         assert diff_boxes_1.max(
 | |
|         ) < 1e-04, "There's difference in detection boxes 1."
 | |
|         assert diff_label_1.max(
 | |
|         ) < 1e-04, "There's difference in detection label 1."
 | |
|         assert diff_scores_1.max(
 | |
|         ) < 1e-05, "There's difference in detection score 1."
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_detection_fastestdet()
 | |
|     test_detection_fastestdet_runtime() |