mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			185 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			185 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import fastdeploy as fd
 | |
| print(fd.__path__)
 | |
| import cv2
 | |
| import os
 | |
| import pickle
 | |
| import numpy as np
 | |
| import runtime_config as rc
 | |
| 
 | |
| 
 | |
| def test_detection_faster_rcnn():
 | |
|     model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/faster_rcnn_r50_vd_fpn_2x_coco.tgz"
 | |
|     input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
 | |
|     result_url = "https://bj.bcebos.com/fastdeploy/tests/data/faster_rcnn_baseline.pkl"
 | |
|     fd.download_and_decompress(model_url, "resources")
 | |
|     fd.download(input_url1, "resources")
 | |
|     fd.download(result_url, "resources")
 | |
|     model_path = "resources/faster_rcnn_r50_vd_fpn_2x_coco"
 | |
| 
 | |
|     model_file = os.path.join(model_path, "model.pdmodel")
 | |
|     params_file = os.path.join(model_path, "model.pdiparams")
 | |
|     config_file = os.path.join(model_path, "infer_cfg.yml")
 | |
|     rc.test_option.use_paddle_backend()
 | |
|     model = fd.vision.detection.FasterRCNN(
 | |
|         model_file, params_file, config_file, runtime_option=rc.test_option)
 | |
| 
 | |
|     # compare diff
 | |
|     im1 = cv2.imread("./resources/000000014439.jpg")
 | |
|     for i in range(2):
 | |
|         result = model.predict(im1)
 | |
|         with open("resources/faster_rcnn_baseline.pkl", "rb") as f:
 | |
|             boxes, scores, label_ids = pickle.load(f)
 | |
|         pred_boxes = np.array(result.boxes)
 | |
|         pred_scores = np.array(result.scores)
 | |
|         pred_label_ids = np.array(result.label_ids)
 | |
| 
 | |
|         diff_boxes = np.fabs(boxes - pred_boxes)
 | |
|         diff_scores = np.fabs(scores - pred_scores)
 | |
|         diff_label_ids = np.fabs(label_ids - pred_label_ids)
 | |
| 
 | |
|         print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
 | |
| 
 | |
|         score_threshold = 0.0
 | |
|         assert diff_boxes[scores > score_threshold].max(
 | |
|         ) < 1e-04, "There's diff in boxes."
 | |
|         assert diff_scores[scores > score_threshold].max(
 | |
|         ) < 1e-04, "There's diff in scores."
 | |
|         assert diff_label_ids[scores > score_threshold].max(
 | |
|         ) < 1e-04, "There's diff in label_ids."
 | |
| 
 | |
| 
 | |
| #    result = model.predict(im1)
 | |
| #    with open("faster_rcnn_baseline.pkl", "wb") as f:
 | |
| #        pickle.dump([np.array(result.boxes), np.array(result.scores), np.array(result.label_ids)], f)
 | |
| 
 | |
| 
 | |
| def test_detection_faster_rcnn1():
 | |
|     model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/faster_rcnn_r50_vd_fpn_2x_coco.tgz"
 | |
|     input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
 | |
|     result_url = "https://bj.bcebos.com/fastdeploy/tests/data/faster_rcnn_baseline.pkl"
 | |
|     fd.download_and_decompress(model_url, "resources")
 | |
|     fd.download(input_url1, "resources")
 | |
|     fd.download(result_url, "resources")
 | |
|     model_path = "resources/faster_rcnn_r50_vd_fpn_2x_coco"
 | |
| 
 | |
|     model_file = os.path.join(model_path, "model.pdmodel")
 | |
|     params_file = os.path.join(model_path, "model.pdiparams")
 | |
|     config_file = os.path.join(model_path, "infer_cfg.yml")
 | |
|     preprocessor = fd.vision.detection.PaddleDetPreprocessor(config_file)
 | |
|     postprocessor = fd.vision.detection.PaddleDetPostprocessor()
 | |
| 
 | |
|     option = rc.test_option
 | |
|     option.set_model_path(model_file, params_file)
 | |
|     option.use_paddle_infer_backend()
 | |
|     runtime = fd.Runtime(option)
 | |
| 
 | |
|     # compare diff
 | |
|     for i in range(2):
 | |
|         im1 = cv2.imread("./resources/000000014439.jpg")
 | |
|         input_tensors = preprocessor.run([im1])
 | |
|         output_tensors = runtime.infer({
 | |
|             "image": input_tensors[0],
 | |
|             "scale_factor": input_tensors[1],
 | |
|             "im_shape": input_tensors[2]
 | |
|         })
 | |
|         results = postprocessor.run(output_tensors)
 | |
|         result = results[0]
 | |
| 
 | |
|         with open("resources/faster_rcnn_baseline.pkl", "rb") as f:
 | |
|             boxes, scores, label_ids = pickle.load(f)
 | |
|         pred_boxes = np.array(result.boxes)
 | |
|         pred_scores = np.array(result.scores)
 | |
|         pred_label_ids = np.array(result.label_ids)
 | |
| 
 | |
|         diff_boxes = np.fabs(boxes - pred_boxes)
 | |
|         diff_scores = np.fabs(scores - pred_scores)
 | |
|         diff_label_ids = np.fabs(label_ids - pred_label_ids)
 | |
| 
 | |
|         print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
 | |
| 
 | |
|         score_threshold = 0.0
 | |
|         assert diff_boxes[scores > score_threshold].max(
 | |
|         ) < 1e-04, "There's diff in boxes."
 | |
|         assert diff_scores[scores > score_threshold].max(
 | |
|         ) < 1e-04, "There's diff in scores."
 | |
|         assert diff_label_ids[scores > score_threshold].max(
 | |
|         ) < 1e-04, "There's diff in label_ids."
 | |
| 
 | |
| 
 | |
| # test runtime.zero_copy_infer and bind_input_tensor get_output_tensor
 | |
| def test_detection_faster_rcnn2():
 | |
|     model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/faster_rcnn_r50_vd_fpn_2x_coco.tgz"
 | |
|     input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
 | |
|     result_url = "https://bj.bcebos.com/fastdeploy/tests/data/faster_rcnn_baseline.pkl"
 | |
|     fd.download_and_decompress(model_url, "resources")
 | |
|     fd.download(input_url1, "resources")
 | |
|     fd.download(result_url, "resources")
 | |
|     model_path = "resources/faster_rcnn_r50_vd_fpn_2x_coco"
 | |
| 
 | |
|     model_file = os.path.join(model_path, "model.pdmodel")
 | |
|     params_file = os.path.join(model_path, "model.pdiparams")
 | |
|     config_file = os.path.join(model_path, "infer_cfg.yml")
 | |
|     preprocessor = fd.vision.detection.PaddleDetPreprocessor(config_file)
 | |
|     postprocessor = fd.vision.detection.PaddleDetPostprocessor()
 | |
| 
 | |
|     option = rc.test_option
 | |
|     option.set_model_path(model_file, params_file)
 | |
|     option.use_paddle_infer_backend()
 | |
|     runtime = fd.Runtime(option)
 | |
| 
 | |
|     # compare diff
 | |
|     input_names = ["image", "scale_factor", "im_shape"]
 | |
|     output_names = ["concat_12.tmp_0", "concat_8.tmp_0"]
 | |
|     for i in range(2):
 | |
|         im1 = cv2.imread("./resources/000000014439.jpg")
 | |
|         input_tensors = preprocessor.run([im1.copy(), ])
 | |
|         for i, input_tensor in enumerate(input_tensors):
 | |
|             runtime.bind_input_tensor(input_names[i], input_tensor)
 | |
|         runtime.zero_copy_infer()
 | |
|         output_tensors = []
 | |
|         for name in output_names:
 | |
|             output_tensor = runtime.get_output_tensor(name)
 | |
|             output_tensors.append(output_tensor)
 | |
|         results = postprocessor.run(output_tensors)
 | |
|         result = results[0]
 | |
| 
 | |
|         with open("resources/faster_rcnn_baseline.pkl", "rb") as f:
 | |
|             boxes, scores, label_ids = pickle.load(f)
 | |
|         pred_boxes = np.array(result.boxes)
 | |
|         pred_scores = np.array(result.scores)
 | |
|         pred_label_ids = np.array(result.label_ids)
 | |
| 
 | |
|         diff_boxes = np.fabs(boxes - pred_boxes)
 | |
|         diff_scores = np.fabs(scores - pred_scores)
 | |
|         diff_label_ids = np.fabs(label_ids - pred_label_ids)
 | |
| 
 | |
|         print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
 | |
| 
 | |
|         score_threshold = 0.0
 | |
|         assert diff_boxes[scores > score_threshold].max(
 | |
|         ) < 1e-04, "There's diff in boxes."
 | |
|         assert diff_scores[scores > score_threshold].max(
 | |
|         ) < 1e-04, "There's diff in scores."
 | |
|         assert diff_label_ids[scores > score_threshold].max(
 | |
|         ) < 1e-04, "There's diff in label_ids."
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_detection_faster_rcnn()
 | |
|     test_detection_faster_rcnn1()
 | |
|     test_detection_faster_rcnn2()
 | 
