Files
FastDeploy/fastdeploy/vision/ocr/ppocr/rec_preprocessor.cc
Thomas Young 143506b654 [Model] change ocr pre and post (#568)
* change ocr pre and post

* add pybind

* change ocr

* fix bug

* fix bug

* fix bug

* fix bug

* fix bug

* fix bug

* fix copy bug

* fix code style

* fix bug

* add new function

* fix windows ci bug
2022-11-18 13:17:42 +08:00

100 lines
3.0 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/ocr/ppocr/rec_preprocessor.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
#include "fastdeploy/function/concat.h"
namespace fastdeploy {
namespace vision {
namespace ocr {
RecognizerPreprocessor::RecognizerPreprocessor() {
initialized_ = true;
}
void OcrRecognizerResizeImage(FDMat* mat, float max_wh_ratio,
const std::vector<int>& rec_image_shape) {
int imgC, imgH, imgW;
imgC = rec_image_shape[0];
imgH = rec_image_shape[1];
imgW = rec_image_shape[2];
imgW = int(imgH * max_wh_ratio);
float ratio = float(mat->Width()) / float(mat->Height());
int resize_w;
if (ceilf(imgH * ratio) > imgW) {
resize_w = imgW;
}else{
resize_w = int(ceilf(imgH * ratio));
}
Resize::Run(mat, resize_w, imgH);
std::vector<float> value = {0, 0, 0};
Pad::Run(mat, 0, 0, 0, int(imgW - mat->Width()), value);
}
bool RecognizerPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs) {
if (!initialized_) {
FDERROR << "The preprocessor is not initialized." << std::endl;
return false;
}
if (images->size() == 0) {
FDERROR << "The size of input images should be greater than 0." << std::endl;
return false;
}
int imgH = rec_image_shape_[1];
int imgW = rec_image_shape_[2];
float max_wh_ratio = imgW * 1.0 / imgH;
float ori_wh_ratio;
for (size_t i = 0; i < images->size(); ++i) {
FDMat* mat = &(images->at(i));
ori_wh_ratio = mat->Width() * 1.0 / mat->Height();
max_wh_ratio = std::max(max_wh_ratio, ori_wh_ratio);
}
for (size_t i = 0; i < images->size(); ++i) {
FDMat* mat = &(images->at(i));
OcrRecognizerResizeImage(mat, max_wh_ratio, rec_image_shape_);
NormalizeAndPermute::Run(mat, mean_, scale_, is_scale_);
/*
Normalize::Run(mat, mean_, scale_, is_scale_);
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
*/
}
// Only have 1 output Tensor.
outputs->resize(1);
// Concat all the preprocessed data to a batch tensor
std::vector<FDTensor> tensors(images->size());
for (size_t i = 0; i < images->size(); ++i) {
(*images)[i].ShareWithTensor(&(tensors[i]));
tensors[i].ExpandDim(0);
}
if (tensors.size() == 1) {
(*outputs)[0] = std::move(tensors[0]);
} else {
function::Concat(tensors, &((*outputs)[0]), 0);
}
return true;
}
} // namespace ocr
} // namespace vision
} // namespace fastdeploy