Files
FastDeploy/fastdeploy/vision/ocr/ppocr/ocrmodel_pybind.cc
Thomas Young 143506b654 [Model] change ocr pre and post (#568)
* change ocr pre and post

* add pybind

* change ocr

* fix bug

* fix bug

* fix bug

* fix bug

* fix bug

* fix bug

* fix copy bug

* fix code style

* fix bug

* add new function

* fix windows ci bug
2022-11-18 13:17:42 +08:00

187 lines
9.1 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <pybind11/stl.h>
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindPPOCRModel(pybind11::module& m) {
m.def("sort_boxes", [](std::vector<std::array<int, 8>>& boxes) {
vision::ocr::SortBoxes(&boxes);
return boxes;
});
// DBDetector
pybind11::class_<vision::ocr::DBDetector, FastDeployModel>(m, "DBDetector")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def(pybind11::init<>())
.def_readwrite("preprocessor", &vision::ocr::DBDetector::preprocessor_)
.def_readwrite("postprocessor", &vision::ocr::DBDetector::postprocessor_);
pybind11::class_<vision::ocr::DBDetectorPreprocessor>(m, "DBDetectorPreprocessor")
.def(pybind11::init<>())
.def_readwrite("max_side_len", &vision::ocr::DBDetectorPreprocessor::max_side_len_)
.def_readwrite("mean", &vision::ocr::DBDetectorPreprocessor::mean_)
.def_readwrite("scale", &vision::ocr::DBDetectorPreprocessor::scale_)
.def_readwrite("is_scale", &vision::ocr::DBDetectorPreprocessor::is_scale_)
.def("run", [](vision::ocr::DBDetectorPreprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
std::vector<std::array<int, 4>> batch_det_img_info;
self.Run(&images, &outputs, &batch_det_img_info);
for(size_t i = 0; i< outputs.size(); ++i){
outputs[i].StopSharing();
}
return make_pair(outputs, batch_det_img_info);
});
pybind11::class_<vision::ocr::DBDetectorPostprocessor>(m, "DBDetectorPostprocessor")
.def(pybind11::init<>())
.def_readwrite("det_db_thresh", &vision::ocr::DBDetectorPostprocessor::det_db_thresh_)
.def_readwrite("det_db_box_thresh", &vision::ocr::DBDetectorPostprocessor::det_db_box_thresh_)
.def_readwrite("det_db_unclip_ratio", &vision::ocr::DBDetectorPostprocessor::det_db_unclip_ratio_)
.def_readwrite("det_db_score_mode", &vision::ocr::DBDetectorPostprocessor::det_db_score_mode_)
.def_readwrite("use_dilation", &vision::ocr::DBDetectorPostprocessor::use_dilation_)
.def("run", [](vision::ocr::DBDetectorPostprocessor& self,
std::vector<FDTensor>& inputs,
const std::vector<std::array<int, 4>>& batch_det_img_info) {
std::vector<std::vector<std::array<int, 8>>> results;
if (!self.Run(inputs, &results, batch_det_img_info)) {
pybind11::eval("raise Exception('Failed to preprocess the input data in DBDetectorPostprocessor.')");
}
return results;
})
.def("run", [](vision::ocr::DBDetectorPostprocessor& self,
std::vector<pybind11::array>& input_array,
const std::vector<std::array<int, 4>>& batch_det_img_info) {
std::vector<std::vector<std::array<int, 8>>> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results, batch_det_img_info)) {
pybind11::eval("raise Exception('Failed to preprocess the input data in DBDetectorPostprocessor.')");
}
return results;
});
// Classifier
pybind11::class_<vision::ocr::Classifier, FastDeployModel>(m, "Classifier")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def(pybind11::init<>())
.def_readwrite("preprocessor", &vision::ocr::Classifier::preprocessor_)
.def_readwrite("postprocessor", &vision::ocr::Classifier::postprocessor_);
pybind11::class_<vision::ocr::ClassifierPreprocessor>(m, "ClassifierPreprocessor")
.def(pybind11::init<>())
.def_readwrite("cls_image_shape", &vision::ocr::ClassifierPreprocessor::cls_image_shape_)
.def_readwrite("mean", &vision::ocr::ClassifierPreprocessor::mean_)
.def_readwrite("scale", &vision::ocr::ClassifierPreprocessor::scale_)
.def_readwrite("is_scale", &vision::ocr::ClassifierPreprocessor::is_scale_)
.def("run", [](vision::ocr::ClassifierPreprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
if (!self.Run(&images, &outputs)) {
pybind11::eval("raise Exception('Failed to preprocess the input data in ClassifierPreprocessor.')");
}
for(size_t i = 0; i< outputs.size(); ++i){
outputs[i].StopSharing();
}
return outputs;
});
pybind11::class_<vision::ocr::ClassifierPostprocessor>(m, "ClassifierPostprocessor")
.def(pybind11::init<>())
.def_readwrite("cls_thresh", &vision::ocr::ClassifierPostprocessor::cls_thresh_)
.def("run", [](vision::ocr::ClassifierPostprocessor& self,
std::vector<FDTensor>& inputs) {
std::vector<int> cls_labels;
std::vector<float> cls_scores;
if (!self.Run(inputs, &cls_labels, &cls_scores)) {
pybind11::eval("raise Exception('Failed to preprocess the input data in ClassifierPostprocessor.')");
}
return make_pair(cls_labels,cls_scores);
})
.def("run", [](vision::ocr::ClassifierPostprocessor& self,
std::vector<pybind11::array>& input_array) {
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
std::vector<int> cls_labels;
std::vector<float> cls_scores;
if (!self.Run(inputs, &cls_labels, &cls_scores)) {
pybind11::eval("raise Exception('Failed to preprocess the input data in ClassifierPostprocessor.')");
}
return make_pair(cls_labels,cls_scores);
});
// Recognizer
pybind11::class_<vision::ocr::Recognizer, FastDeployModel>(m, "Recognizer")
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
ModelFormat>())
.def(pybind11::init<>())
.def_readwrite("preprocessor", &vision::ocr::Recognizer::preprocessor_)
.def_readwrite("postprocessor", &vision::ocr::Recognizer::postprocessor_);
pybind11::class_<vision::ocr::RecognizerPreprocessor>(m, "RecognizerPreprocessor")
.def(pybind11::init<>())
.def_readwrite("rec_image_shape", &vision::ocr::RecognizerPreprocessor::rec_image_shape_)
.def_readwrite("mean", &vision::ocr::RecognizerPreprocessor::mean_)
.def_readwrite("scale", &vision::ocr::RecognizerPreprocessor::scale_)
.def_readwrite("is_scale", &vision::ocr::RecognizerPreprocessor::is_scale_)
.def("run", [](vision::ocr::RecognizerPreprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
if (!self.Run(&images, &outputs)) {
pybind11::eval("raise Exception('Failed to preprocess the input data in RecognizerPreprocessor.')");
}
for(size_t i = 0; i< outputs.size(); ++i){
outputs[i].StopSharing();
}
return outputs;
});
pybind11::class_<vision::ocr::RecognizerPostprocessor>(m, "RecognizerPostprocessor")
.def(pybind11::init<std::string>())
.def("run", [](vision::ocr::RecognizerPostprocessor& self,
std::vector<FDTensor>& inputs) {
std::vector<std::string> texts;
std::vector<float> rec_scores;
if (!self.Run(inputs, &texts, &rec_scores)) {
pybind11::eval("raise Exception('Failed to preprocess the input data in RecognizerPostprocessor.')");
}
return make_pair(texts, rec_scores);
})
.def("run", [](vision::ocr::RecognizerPostprocessor& self,
std::vector<pybind11::array>& input_array) {
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
std::vector<std::string> texts;
std::vector<float> rec_scores;
if (!self.Run(inputs, &texts, &rec_scores)) {
pybind11::eval("raise Exception('Failed to preprocess the input data in RecognizerPostprocessor.')");
}
return make_pair(texts, rec_scores);
});
}
} // namespace fastdeploy