mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* change ocr pre and post * add pybind * change ocr * fix bug * fix bug * fix bug * fix bug * fix bug * fix bug * fix copy bug * fix code style * fix bug * add new function * fix windows ci bug
114 lines
3.8 KiB
C++
114 lines
3.8 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/ocr/ppocr/det_preprocessor.h"
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
|
|
#include "fastdeploy/function/concat.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace ocr {
|
|
|
|
DBDetectorPreprocessor::DBDetectorPreprocessor() {
|
|
initialized_ = true;
|
|
}
|
|
|
|
std::array<int, 4> OcrDetectorGetInfo(FDMat* img, int max_size_len) {
|
|
int w = img->Width();
|
|
int h = img->Height();
|
|
|
|
float ratio = 1.f;
|
|
int max_wh = w >= h ? w : h;
|
|
if (max_wh > max_size_len) {
|
|
if (h > w) {
|
|
ratio = float(max_size_len) / float(h);
|
|
} else {
|
|
ratio = float(max_size_len) / float(w);
|
|
}
|
|
}
|
|
int resize_h = int(float(h) * ratio);
|
|
int resize_w = int(float(w) * ratio);
|
|
resize_h = std::max(int(std::round(float(resize_h) / 32) * 32), 32);
|
|
resize_w = std::max(int(std::round(float(resize_w) / 32) * 32), 32);
|
|
|
|
return {w,h,resize_w,resize_h};
|
|
/*
|
|
*ratio_h = float(resize_h) / float(h);
|
|
*ratio_w = float(resize_w) / float(w);
|
|
*/
|
|
}
|
|
bool OcrDetectorResizeImage(FDMat* img,
|
|
int resize_w,
|
|
int resize_h,
|
|
int max_resize_w,
|
|
int max_resize_h) {
|
|
Resize::Run(img, resize_w, resize_h);
|
|
std::vector<float> value = {0, 0, 0};
|
|
Pad::Run(img, 0, max_resize_h-resize_h, 0, max_resize_w - resize_w, value);
|
|
return true;
|
|
}
|
|
|
|
bool DBDetectorPreprocessor::Run(std::vector<FDMat>* images,
|
|
std::vector<FDTensor>* outputs,
|
|
std::vector<std::array<int, 4>>* batch_det_img_info_ptr) {
|
|
if (!initialized_) {
|
|
FDERROR << "The preprocessor is not initialized." << std::endl;
|
|
return false;
|
|
}
|
|
if (images->size() == 0) {
|
|
FDERROR << "The size of input images should be greater than 0." << std::endl;
|
|
return false;
|
|
}
|
|
int max_resize_w = 0;
|
|
int max_resize_h = 0;
|
|
std::vector<std::array<int, 4>>& batch_det_img_info = *batch_det_img_info_ptr;
|
|
batch_det_img_info.clear();
|
|
batch_det_img_info.resize(images->size());
|
|
for (size_t i = 0; i < images->size(); ++i) {
|
|
FDMat* mat = &(images->at(i));
|
|
batch_det_img_info[i] = OcrDetectorGetInfo(mat,max_side_len_);
|
|
max_resize_w = std::max(max_resize_w,batch_det_img_info[i][2]);
|
|
max_resize_h = std::max(max_resize_h,batch_det_img_info[i][3]);
|
|
}
|
|
for (size_t i = 0; i < images->size(); ++i) {
|
|
FDMat* mat = &(images->at(i));
|
|
OcrDetectorResizeImage(mat, batch_det_img_info[i][2],batch_det_img_info[i][3],max_resize_w,max_resize_h);
|
|
NormalizeAndPermute::Run(mat, mean_, scale_, is_scale_);
|
|
/*
|
|
Normalize::Run(mat, mean_, scale_, is_scale_);
|
|
HWC2CHW::Run(mat);
|
|
Cast::Run(mat, "float");
|
|
*/
|
|
}
|
|
// Only have 1 output Tensor.
|
|
outputs->resize(1);
|
|
// Concat all the preprocessed data to a batch tensor
|
|
std::vector<FDTensor> tensors(images->size());
|
|
for (size_t i = 0; i < images->size(); ++i) {
|
|
(*images)[i].ShareWithTensor(&(tensors[i]));
|
|
tensors[i].ExpandDim(0);
|
|
}
|
|
if (tensors.size() == 1) {
|
|
(*outputs)[0] = std::move(tensors[0]);
|
|
} else {
|
|
function::Concat(tensors, &((*outputs)[0]), 0);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace ocr
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|