Files
FastDeploy/fastdeploy/vision/ocr/ppocr/det_postprocessor.cc
Thomas Young 143506b654 [Model] change ocr pre and post (#568)
* change ocr pre and post

* add pybind

* change ocr

* fix bug

* fix bug

* fix bug

* fix bug

* fix bug

* fix bug

* fix copy bug

* fix code style

* fix bug

* add new function

* fix windows ci bug
2022-11-18 13:17:42 +08:00

111 lines
3.6 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/ocr/ppocr/det_postprocessor.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
namespace fastdeploy {
namespace vision {
namespace ocr {
DBDetectorPostprocessor::DBDetectorPostprocessor() {
initialized_ = true;
}
bool DBDetectorPostprocessor::SingleBatchPostprocessor(
const float* out_data,
int n2,
int n3,
const std::array<int,4>& det_img_info,
std::vector<std::array<int, 8>>* boxes_result
) {
int n = n2 * n3;
// prepare bitmap
std::vector<float> pred(n, 0.0);
std::vector<unsigned char> cbuf(n, ' ');
for (int i = 0; i < n; i++) {
pred[i] = float(out_data[i]);
cbuf[i] = (unsigned char)((out_data[i]) * 255);
}
cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char*)cbuf.data());
cv::Mat pred_map(n2, n3, CV_32F, (float*)pred.data());
const double threshold = det_db_thresh_ * 255;
const double maxvalue = 255;
cv::Mat bit_map;
cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
if (use_dilation_) {
cv::Mat dila_ele =
cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
cv::dilate(bit_map, bit_map, dila_ele);
}
std::vector<std::vector<std::vector<int>>> boxes;
boxes =
post_processor_.BoxesFromBitmap(pred_map, bit_map, det_db_box_thresh_,
det_db_unclip_ratio_, det_db_score_mode_);
boxes = post_processor_.FilterTagDetRes(boxes, det_img_info);
// boxes to boxes_result
for (int i = 0; i < boxes.size(); i++) {
std::array<int, 8> new_box;
int k = 0;
for (auto& vec : boxes[i]) {
for (auto& e : vec) {
new_box[k++] = e;
}
}
boxes_result->push_back(new_box);
}
return true;
}
bool DBDetectorPostprocessor::Run(const std::vector<FDTensor>& tensors,
std::vector<std::vector<std::array<int, 8>>>* results,
const std::vector<std::array<int,4>>& batch_det_img_info) {
if (!initialized_) {
FDERROR << "Postprocessor is not initialized." << std::endl;
return false;
}
// DBDetector have only 1 output tensor.
const FDTensor& tensor = tensors[0];
// For DBDetector, the output tensor shape = [batch, 1, ?, ?]
size_t batch = tensor.shape[0];
size_t length = accumulate(tensor.shape.begin()+1, tensor.shape.end(), 1, std::multiplies<int>());
const float* tensor_data = reinterpret_cast<const float*>(tensor.Data());
results->resize(batch);
for (int i_batch = 0; i_batch < batch; ++i_batch) {
if(!SingleBatchPostprocessor(tensor_data,
tensor.shape[2],
tensor.shape[3],
batch_det_img_info[i_batch],
&results->at(i_batch)
))return false;
tensor_data = tensor_data + length;
}
return true;
}
} // namespace ocr
} // namespace vision
} // namespace fastdeploy