mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* refactor(mtp): split draft_tokens into standalone post-processing path for MTP + logprobs * Restore Request.__repr__ implementation * ci * add envs * fix unittest
158 lines
5.8 KiB
Python
158 lines
5.8 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import unittest
|
|
from unittest.mock import MagicMock
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from fastdeploy.engine.request import RequestOutput
|
|
from fastdeploy.output.token_processor import TokenProcessor
|
|
|
|
|
|
class TestProcessBatchDraftTokens(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
# 模拟 cfg
|
|
cfg = MagicMock()
|
|
cfg.speculative_config = MagicMock()
|
|
cfg.speculative_config.method = "mtp"
|
|
cfg.speculative_config.num_speculative_tokens = 3
|
|
cfg.model_config = MagicMock()
|
|
cfg.model_config.enable_logprob = True
|
|
|
|
self.processor = TokenProcessor(
|
|
cfg=cfg, cached_generated_tokens=MagicMock(), engine_worker_queue=MagicMock(), split_connector=MagicMock()
|
|
)
|
|
|
|
# mock resource_manager
|
|
self.processor.resource_manager = MagicMock()
|
|
self.processor.resource_manager.stop_flags = [False] * 512
|
|
self.processor.resource_manager.tasks_list = [MagicMock()] * 512
|
|
|
|
for task in self.processor.resource_manager.tasks_list:
|
|
task.request_id = "test_request"
|
|
task.eos_token_ids = [2]
|
|
|
|
def test_process_batch_draft_tokens_normal_case(self):
|
|
"""测试正常情况下的target处理"""
|
|
batch = 2
|
|
accept_num = [3, 2]
|
|
K = 20
|
|
MAX_DRAFT_TOKENS = 6
|
|
|
|
tokens = np.random.randint(100, 200, size=(batch, MAX_DRAFT_TOKENS, K + 1))
|
|
scores = np.random.rand(batch, MAX_DRAFT_TOKENS, K + 1).astype(np.float32)
|
|
ranks = np.random.randint(0, K, size=(batch, MAX_DRAFT_TOKENS))
|
|
|
|
results = self.processor._process_batch_draft_tokens(
|
|
mtype=4,
|
|
batch=batch,
|
|
accept_num=accept_num,
|
|
tokens=paddle.to_tensor(tokens),
|
|
scores=paddle.to_tensor(scores),
|
|
ranks=paddle.to_tensor(ranks),
|
|
)
|
|
|
|
self.assertEqual(len(results), batch)
|
|
for i, result in enumerate(results):
|
|
self.assertIsInstance(result, RequestOutput)
|
|
self.assertEqual(result.output_type, 4)
|
|
self.assertEqual(result.outputs.index, i)
|
|
self.assertEqual(len(result.outputs.draft_top_logprobs.logprob_token_ids), accept_num[i])
|
|
self.assertEqual(len(result.outputs.draft_top_logprobs.logprobs), accept_num[i])
|
|
self.assertEqual(len(result.outputs.draft_top_logprobs.sampled_token_ranks), accept_num[i])
|
|
|
|
def test_process_batch_draft_tokens_with_stop_flag(self):
|
|
"""测试有停止标志的情况"""
|
|
batch = 3
|
|
self.processor.resource_manager.stop_flags[1] = True # 第二个 request 停止
|
|
|
|
accept_num = [3, 2, 1]
|
|
K = 20
|
|
MAX_DRAFT_TOKENS = 6
|
|
|
|
tokens = np.random.randint(100, 200, size=(batch, MAX_DRAFT_TOKENS, K + 1))
|
|
scores = np.random.rand(batch, MAX_DRAFT_TOKENS, K + 1).astype(np.float32)
|
|
ranks = np.random.randint(0, K, size=(batch, MAX_DRAFT_TOKENS))
|
|
|
|
results = self.processor._process_batch_draft_tokens(
|
|
mtype=4,
|
|
batch=batch,
|
|
accept_num=accept_num,
|
|
tokens=paddle.to_tensor(tokens),
|
|
scores=paddle.to_tensor(scores),
|
|
ranks=paddle.to_tensor(ranks),
|
|
)
|
|
|
|
self.assertEqual(len(results), 2)
|
|
self.assertEqual(results[0].outputs.index, 0)
|
|
self.assertEqual(results[1].outputs.index, 2)
|
|
|
|
def test_process_batch_draft_tokens_empty_accept(self):
|
|
"""测试 accept_num 为 0 的情况"""
|
|
batch = 2
|
|
accept_num = [0, 0]
|
|
|
|
K = 20
|
|
MAX_DRAFT_TOKENS = 6
|
|
tokens = np.random.randint(100, 200, size=(batch, MAX_DRAFT_TOKENS, K + 1))
|
|
scores = np.random.rand(batch, MAX_DRAFT_TOKENS, K + 1).astype(np.float32)
|
|
ranks = np.random.randint(0, K, size=(batch, MAX_DRAFT_TOKENS))
|
|
|
|
results = self.processor._process_batch_draft_tokens(
|
|
mtype=4,
|
|
batch=batch,
|
|
accept_num=accept_num,
|
|
tokens=paddle.to_tensor(tokens),
|
|
scores=paddle.to_tensor(scores),
|
|
ranks=paddle.to_tensor(ranks),
|
|
)
|
|
|
|
self.assertEqual(len(results), batch)
|
|
for result in results:
|
|
self.assertIsNone(result.outputs.draft_top_logprobs)
|
|
|
|
def test_process_batch_draft_tokens_different_k_values(self):
|
|
"""测试不同 K 值情况"""
|
|
batch = 2
|
|
accept_num = [3, 2]
|
|
|
|
K = 5
|
|
MAX_DRAFT_TOKENS = 6
|
|
tokens = np.random.randint(100, 200, size=(batch, MAX_DRAFT_TOKENS, K + 1))
|
|
scores = np.random.rand(batch, MAX_DRAFT_TOKENS, K + 1).astype(np.float32)
|
|
ranks = np.random.randint(0, K, size=(batch, MAX_DRAFT_TOKENS))
|
|
|
|
results = self.processor._process_batch_draft_tokens(
|
|
mtype=4,
|
|
batch=batch,
|
|
accept_num=accept_num,
|
|
tokens=paddle.to_tensor(tokens),
|
|
scores=paddle.to_tensor(scores),
|
|
ranks=paddle.to_tensor(ranks),
|
|
)
|
|
|
|
self.assertEqual(len(results), batch)
|
|
for i, result in enumerate(results):
|
|
self.assertEqual(len(result.outputs.draft_top_logprobs.logprob_token_ids[0]), K + 1)
|
|
self.assertEqual(len(result.outputs.draft_top_logprobs.logprobs[0]), K + 1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|