Files
FastDeploy/custom_ops/xpu_ops/test/test_draft_model_preprocess.py

136 lines
4.6 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
from fastdeploy.model_executor.ops.xpu import draft_model_preprocess
def run_test(device="xpu"):
paddle.seed(2022)
# Define parameters
bsz = 10
draft_tokens_len = 4
input_ids_len = 8
max_draft_token = 10
truncate_first_token = True
splitwise_prefill = False
# Create input tensors
if device == "cpu":
paddle.set_device(device)
draft_tokens = paddle.randint(0, 100, [bsz, draft_tokens_len], dtype="int64")
input_ids = paddle.randint(0, 100, [bsz, input_ids_len], dtype="int64")
stop_flags = paddle.randint(0, 1, [bsz], dtype="int").cast("bool")
seq_lens_this_time = paddle.randint(0, 100, [bsz], dtype="int32")
seq_lens_encoder = paddle.randint(0, 100, [bsz], dtype="int32")
seq_lens_decoder = paddle.randint(0, 100, [bsz], dtype="int32")
step_idx = paddle.randint(0, 100, [bsz], dtype="int64")
seq_lens_encoder_record = paddle.randint(0, 100, [bsz], dtype="int32")
seq_lens_decoder_record = paddle.randint(0, 100, [bsz], dtype="int32")
not_need_stop = paddle.zeros([1], dtype="bool").cpu()
batch_drop = paddle.zeros([bsz], dtype="bool")
# Output tensors
accept_tokens = paddle.randint(0, 100, [bsz, 100], dtype="int64")
accept_num = paddle.randint(1, max_draft_token + 5, [bsz], dtype="int32")
base_model_seq_lens_encoder = paddle.randint(0, 100, [bsz], dtype="int32")
base_model_seq_lens_decoder = paddle.randint(0, 100, [bsz], dtype="int32")
base_model_step_idx = paddle.randint(0, 100, [bsz], dtype="int64")
base_model_stop_flags = paddle.zeros([bsz], dtype="bool")
base_model_is_block_step = paddle.zeros([bsz], dtype="bool")
base_model_draft_tokens = paddle.zeros([bsz, max_draft_token], dtype="int64")
# Run the op
outputs = draft_model_preprocess(
draft_tokens,
input_ids,
stop_flags,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_idx,
seq_lens_encoder_record,
seq_lens_decoder_record,
not_need_stop,
batch_drop,
accept_tokens,
accept_num,
base_model_seq_lens_encoder,
base_model_seq_lens_decoder,
base_model_step_idx,
base_model_stop_flags,
base_model_is_block_step,
base_model_draft_tokens,
max_draft_token=max_draft_token,
truncate_first_token=truncate_first_token,
splitwise_prefill=splitwise_prefill,
)
# Return results for comparison
results = {
"draft_tokens": draft_tokens.numpy(),
"input_ids": input_ids.numpy(),
"stop_flags": stop_flags.numpy(),
"seq_lens_this_time": seq_lens_this_time.numpy(),
"accept_tokens": accept_tokens.numpy(),
"accept_num": accept_num.numpy(),
"not_need_stop": not_need_stop.numpy(),
"outputs": [x.numpy() for x in outputs],
}
return results
def compare_results(cpu_results, xpu_results):
# Compare all outputs
for key in cpu_results:
if key == "outputs":
for i, (cpu_out, xpu_out) in enumerate(zip(cpu_results[key], xpu_results[key])):
np.testing.assert_allclose(
cpu_out,
xpu_out,
rtol=1e-5,
atol=1e-8,
err_msg=f"Output {i} mismatch between CPU and GPU",
)
else:
np.testing.assert_allclose(
cpu_results[key],
xpu_results[key],
rtol=1e-5,
atol=1e-8,
err_msg=f"{key} mismatch between CPU and GPU",
)
print("CPU and GPU results match!")
def test_draft_model_preprocess():
print("Running XPU test...")
xpu_results = run_test("xpu")
print("Running CPU test...")
cpu_results = run_test("cpu")
print("Comparing results...")
compare_results(cpu_results, xpu_results)
print("Test passed!")
if __name__ == "__main__":
test_draft_model_preprocess()