Files
FastDeploy/fastdeploy/input/preprocess.py
luukunn 132a8ef425 Release/2.1 (#3414)
* Pre ce modified (#3335) (#3360)

* Pre ce modified (#3335)

* update

* update

* fix

* fix

* update

* update

* update

* fix

* update

* update

* update

* add ut fix pr(3367)

* [Bug Fix] Fix V1 video bug (#3387)

* fix stopseq error info (#3342)

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>

* [BugFix] Fix default log level of paddleformers (#3377)

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>

* [Polish Code] Remove useless notes

* feat(log):add_request_and_response_log (#3392)

* Optimize CI execution workflow. (#3371) (#3384)

* fix

* [BugFix] fix control signal release failed (#3374)

* [BugFix]

* [BugFix]

* [BugFix]

* [BugFix]

* fix

* fix

---------

Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>

* Revert "Merge branch 'feature/online/vs_think_20250813' into release/2.1"

This reverts commit 02596fc537, reversing
changes made to 03347626a6.

* [XPU] Fixed the issue of performance degradation caused by enabling ENABLE_V1_KVCACHE_SCHEDULER (#3393)

* fix v1 schedule oom bug

* fix v1 schedule oom bug

* [BugFix] fix ErnieProcessor not set raw_prediction (#3401)

* [Doc]Release fastdeploy-xpu 2.1.0 (#3407)

* fix v1 schedule oom bug

* fix v1 schedule oom bug

* update release note

* [Doc]Release fastdeploy-xpu 2.0.3  (#3408)

* fix v1 schedule oom bug

* fix v1 schedule oom bug

* update release note

* update info

---------

Co-authored-by: YUNSHEN XIE <1084314248@qq.com>
Co-authored-by: ming1753 <61511741+ming1753@users.noreply.github.com>
Co-authored-by: JYChen <zoooo0820@qq.com>
Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
Co-authored-by: Jiang-Jia-Jun <jiangjiajun@baidu.com>
Co-authored-by: xiaolei373 <zley373@gmail.com>
Co-authored-by: ltd0924 <32387785+ltd0924@users.noreply.github.com>
Co-authored-by: yinwei <yinwei_hust@163.com>
Co-authored-by: memoryCoderC <1137889088@qq.com>
2025-08-14 20:53:47 +08:00

102 lines
4.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Any, Dict, Optional
from fastdeploy.config import ErnieArchitectures
from fastdeploy.engine.config import ModelConfig
from fastdeploy.reasoning import ReasoningParserManager
class InputPreprocessor:
"""
Args:
model_name_or_path (str):
Model name or path to the pretrained model. If a model name is provided, it should be a
key in the Hugging Face Transformers' model registry (https://huggingface.co/models).
The model will be downloaded from the Hugging Face model hub if necessary.
If a path is provided, the model will be loaded from that path.
reasoning_parser (str, optional):
Reasoning parser type. Defaults to None.
Flag specifies the reasoning parser to use for extracting reasoning content from the model output
enable_mm (bool, optional):
Whether to use the multi-modal model processor. Defaults to False.
Raises:
ValueError:
If the model name is not found in the Hugging Face Transformers' model registry and the path does not
exist.
"""
def __init__(
self,
model_name_or_path: str,
reasoning_parser: str = None,
limit_mm_per_prompt: Optional[Dict[str, Any]] = None,
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
enable_mm: bool = False,
) -> None:
self.model_name_or_path = model_name_or_path
self.reasoning_parser = reasoning_parser
self.enable_mm = enable_mm
self.limit_mm_per_prompt = limit_mm_per_prompt
self.mm_processor_kwargs = mm_processor_kwargs
def create_processor(self):
"""
创建数据处理器。如果启用了多模态注册表,则使用该表中的模型;否则,使用传递给构造函数的模型名称或路径。
返回值DataProcessor如果不启用多模态注册表或MultiModalRegistry.Processor如果启用多模态注册表
Args:
无参数。
Returns:
DataProcessor or MultiModalRegistry.Processor (Union[DataProcessor, MultiModalRegistry.Processor]): 数据处理器。
"""
reasoning_parser_obj = None
if self.reasoning_parser:
reasoning_parser_obj = ReasoningParserManager.get_reasoning_parser(self.reasoning_parser)
architectures = ModelConfig({"model": self.model_name_or_path}).architectures[0]
if not self.enable_mm:
if not ErnieArchitectures.contains_ernie_arch(architectures):
from fastdeploy.input.text_processor import DataProcessor
self.processor = DataProcessor(
model_name_or_path=self.model_name_or_path,
reasoning_parser_obj=reasoning_parser_obj,
)
else:
from fastdeploy.input.ernie_processor import ErnieProcessor
self.processor = ErnieProcessor(
model_name_or_path=self.model_name_or_path,
reasoning_parser_obj=reasoning_parser_obj,
)
else:
if not architectures.startswith("Ernie4_5_VLMoeForConditionalGeneration"):
raise ValueError(f"Model {self.model_name_or_path} is not a valid Ernie4_5_VLMoe model.")
else:
from fastdeploy.input.ernie_vl_processor import ErnieMoEVLProcessor
self.processor = ErnieMoEVLProcessor(
model_name_or_path=self.model_name_or_path,
limit_mm_per_prompt=self.limit_mm_per_prompt,
mm_processor_kwargs=self.mm_processor_kwargs,
reasoning_parser_obj=reasoning_parser_obj,
)
return self.processor